Open Access
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 04008
Number of page(s) 16
Section Heat and Mass Transfert
Published online 11 November 2021
  1. S.M. Aminossadati, A. Raisi, B. Ghasemi, Effects of magnetic field on nanofluid forced convection in a partially heated microchannel, Int. J. Non-Linear Mech., 46, 1373–1382 (2011). [Google Scholar]
  2. M. Kalteh, A. Abbassi, M. Saffar-Avval, J. Harting, Eulerian–Eulerian twophase numerical simulation of nanofluid laminar forced convection in a microchannel, Int. J. Heat Fluid Flow,32,107–116 (2011). [Google Scholar]
  3. M. Mital, Semi-analytical investigation of electronics cooling using developing nanofluid flow in rectangular microchannels, Appl. Therm. Eng., 52, 321–327 (2013). [Google Scholar]
  4. M. Mital, Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels, Appl. Therm. Eng., 50, 429–436 (2013). [Google Scholar]
  5. A. Karimipour,A H. Nezhad, A D’Orazio, M.H. Esfe, M. R. Safaei, E. Shirani, Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method,European Journal of mechanics B/ Fluids, 49, 89-99 (2015). [Google Scholar]
  6. C. Ay, C.W. Young, C.F. Young, Application of lattice Boltzmann method to the fluid analysis in a rectangular microchannel, Comput. Math. Appl., 64, 1065–1083(2012). [Google Scholar]
  7. Y.T. Yang, F.H. Lai, Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a microchannel using the lattice Boltzmann method, Int. Commun. Heat Mass Transfer, 38,607–614 (2011). [Google Scholar]
  8. Bird G 1994 Molecular gas dynamics and the direct simulation of gaz flows (Oxford). [Google Scholar]
  9. Z. Guo, T.S. Zhao, Lattice Boltzmann model for incompressible flows through porous media, Physical Review E 66,036304/1-9 (2002). [Google Scholar]
  10. A.D’Orazio, S. Succi, Simulation two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions,Future Genet. Comput. Syst., 20,935-944 (2014). [Google Scholar]
  11. H C Brinkman 1952 The viscosity of concentrated suspensions and solutions J. Chem. Phys. 20 [Google Scholar]
  12. A. D’Orazio, S. Succi, C.Arrighetti, Lattice Boltzmann simulation of open flows with heat transfer, Phys, Fluids, 15, 2778-2781(2003). [Google Scholar]
  13. A. D’Orazio, M. Cercione, G.P. Celata, Application to naturel convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition, Int. J. Therm. Sci., 43,575-586 (2004). [Google Scholar]
  14. G D Ngoma and F Erchiqui F, Heat flux and slip effects on liquid flow in a microchannel INT. J. Therm. Sci., 46, 1076-1083 (2007). [Google Scholar]
  15. G Karniadakis and A Beskok 2002 Micro flows: fundamentals and simulation (New York). [Google Scholar]
  16. A. Akbarinia, M. Abdolzadeh, R. Laur, Critical investigation of heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow regimes, Appl. Therm. Eng., 31, 556-565 (2001). [Google Scholar]
  17. X.D. Niu, C. Shu, Y.T. Chew, A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows, Comp. Fluids., 36, 273-281 (2007). [Google Scholar]
  18. A.K. Santara, S. Sen, N. Chakraborty, Study of heat transfer due to laminar flow of copper –water nanofluid through two isothermally heated parallel plates, Int. J. Therm. Sci., 48, 391-400 (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.