Open Access
Issue
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
Article Number 01003
Number of page(s) 7
Section Hydrogen Production
DOI https://doi.org/10.1051/e3sconf/202233401003
Published online 10 January 2022
  1. “A Hydrogen strategy for a climate-neutral Europe.” [Online]. Available: https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf1. [Google Scholar]
  2. P. Aguiar, C. S. Adjiman, and N. P. Brandon, “Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance,” J. Power Sources, vol. 138, no. 1–2, pp. 120–136, Nov. 2004. [Google Scholar]
  3. H. Zhu and R. J. Kee, “A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies,” J. Power Sources, vol. 117, no. 1–2, pp. 61–74, May 2003. [Google Scholar]
  4. D. Andersson, E. Åberg, J. Eborn, J. Yuan, and B. Sundén, “Dynamic modeling of a solid oxide fuel cell system in Modelica,” 2011, pp. 593–602. [Google Scholar]
  5. A. Hauch, S. D. Ebbesen, S. H. Jensen, and M. Mogensen, “Highly efficient high temperature electrolysis,” J. Mater. Chem., vol. 18, no. 20, p. 2331, 2008. [Google Scholar]
  6. A. ISENBERG, “Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures,” Solid State Ionics, vol. 3–4, pp. 431–437, Aug. 1981. [Google Scholar]
  7. W. DONITZ, G. DIETRICH, E. ERDLE, and R. STREICHER, “Electrochemical high temperature technology for hydrogen production or direct electricity generation,” Int. J. Hydrogen Energy, vol. 13, no. 5, pp. 283–287, 1988. [Google Scholar]
  8. L. Crema, M. Testi, and M. Trini, “5 High-temperature electrolysis: efficient and versatile solution for multiple applications,” in Utilization of Hydrogen for Sustainable Energy and Fuels, De Gruyter, 2021, pp. 219–268. [Google Scholar]
  9. J. Saarinen, M. Halinen, J. Ylijoki, M. Noponen, P. Simell, and J. Kiviaho, “Dynamic Model of 5kW SOFC CHP Test Station,” J. Fuel Cell Sci. Technol., vol. 4, no. 4, pp. 397–405, Nov. 2007. [Google Scholar]
  10. X. Xing, J. Lin, N. Brandon, A. Banerjee, and Y. Song, “Time-Varying Model Predictive Control of a Reversible-SOC Energy-Storage Plant Based on the Linear Parameter-Varying Method,” IEEE Trans. Sustain. Energy, vol. 11, no. 3, pp. 1589–1600, Jul. 2020. [Google Scholar]
  11. S. Santhanam, M. P. Heddrich, M. Riedel, and K. A. Friedrich, “Theoretical and experimental study of Reversible Solid Oxide Cell (r-SOC) systems for energy storage,” Energy, vol. 141, pp. 202–214, Dec. 2017. [Google Scholar]
  12. P. Fritzson and V. Engelson, “Modelica — A unified object-oriented language for system modeling and simulation,” 1998, pp. 67–90. [Google Scholar]
  13. Dassault Systèmes, “Dymola Systems Engineering,” 2017. [Online]. Available: https://www.3ds.com. [Google Scholar]
  14. “Modelon.” [Online]. Available: https://www.modelon.com/library/fuel-cell-library/. [Accessed: 01-Aug-2021]. [Google Scholar]
  15. “Modelon libraries.” [Online]. Available: https://www.modelon.com/products-services/modelon-library-suite-modelica-libraries/. [Google Scholar]
  16. Manohar Sohal, “Degradation in Solid Oxide Cells During High Temperature Electrolysis,” May 2009. [Google Scholar]
  17. W. B. Jensen, “The Universal Gas Constant R,” J. Chem. Educ., vol. 80, no. 7, p. 731, Jul. 2003. [Google Scholar]
  18. B. Cheng and M. Ceriotti, “Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids,” Phys. Rev. B, vol. 97, no. 5, p. 054102, Feb. 2018. [Google Scholar]
  19. NIST Standard Reference Database Number 69, NIST Chemistry WebBook. 2021. [Google Scholar]
  20. L. E. Woodman, “Teaching Kirchhoff’s Laws,” Am. J. Phys., vol. 2, no. 4, pp. 161–163, Dec. 1934. [Google Scholar]
  21. T. D. Hutty, S. Dong, and S. Brown, “Suitability of energy storage with reversible solid oxide cells for microgrid applications,” Energy Convers. Manag., vol. 226, p. 113499, Dec. 2020. [Google Scholar]
  22. M. Noponen, M. Halinen, and J. Kiviaho, “Electrochemical characterization and modeling of anode supported solid oxide fuel cell,” Proc. - Electrochem. Soc., vol. PV 2005–07, pp. 544–553, 2005 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.