Open Access
Issue
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
Article Number 02003
Number of page(s) 8
Section Power-to-X Conversion Technologies
DOI https://doi.org/10.1051/e3sconf/202233402003
Published online 10 January 2022
  1. European Commission, “European Green Deal,” 2020. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. [Google Scholar]
  2. Fuel Cells and Hydrogen Joint Undertaking (FCH), “Hydrogen Roadmap Europe,” 2019. [Google Scholar]
  3. IEA, “Europe: key energy statistics.” https://www.iea.org/regions/europe. [Google Scholar]
  4. G. Guandalini and S. Campanari, “Well-to-wheel driving cycle simulations for freight transportation: Battery and hydrogen fuel cell electric vehicles,” 2018 Int. Conf. Electr. Electron. Technol. Automotive, Automot. 2018, no. ii, pp. 0–5, 2018. [Google Scholar]
  5. C. Yang and J. Ogden, “Determining the lowest-cost hydrogen delivery mode,” Int. J. Hydrogen Energy, vol. 32, no. 2, pp. 268–286, 2007. [CrossRef] [Google Scholar]
  6. S. Baufumé et al., “GIS-based scenario calculations for a nationwide German hydrogen pipeline infrastructure,” Int. J. Hydrogen Energy, vol. 38, no. 10, pp. 3813–3829, 2013. [CrossRef] [Google Scholar]
  7. H. Talebian, O. E. Herrera, and W. Mérida, “Spatial and temporal optimization of hydrogen fuel supply chain for light duty passenger vehicles in British Columbia,” Int. J. Hydrogen Energy, vol. 44, no. 47, pp. 25939–25956, 2019. [CrossRef] [Google Scholar]
  8. N. Strachan, N. Balta-Ozkan, D. Joffe, K. McGeevor, and N. Hughes, “Soft-linking energy systems and GIS models to investigate spatial hydrogen infrastructure development in a low-carbon UK energy system,” Int. J. Hydrogen Energy, vol. 34, no. 2, pp. 642–657, 2009. [CrossRef] [Google Scholar]
  9. P. Colbertaldo, S. Cerniauskas, T. Grube, M. Robinius, D. Stolten, and S. Campanari, “Clean mobility infrastructure and sector integration in long-term energy scenarios: The case of Italy,” Renew. Sustain. Energy Rev., vol. 133, p. 110086, 2020. [CrossRef] [Google Scholar]
  10. L. Li, H. Manier, and M. A. Manier, “Integrated optimization model for hydrogen supply chain network design and hydrogen fueling station planning,” Comput. Chem. Eng., vol. 134, 2020. [Google Scholar]
  11. A. Almansoori and A. Betancourt-Torcat, “Design of optimization model for a hydrogen supply chain under emission constraints - A case study of Germany,” Energy, vol. 111, pp. 414–429, 2016. [CrossRef] [Google Scholar]
  12. S. Samsatli, I. Staffell, and N. J. Samsatli, “Optimal design and operation of integrated wind-hydrogen-electricity networks for decarbonising the domestic transport sector in Great Britain,” Int. J. Hydrogen Energy, vol. 41, no. 1, pp. 447–475, 2016. [CrossRef] [Google Scholar]
  13. A. Ochoa Bique and E. Zondervan, “An outlook towards hydrogen supply chain networks in 2050 — Design of novel fuel infrastructures in Germany,” Chem. Eng. Res. Des., vol. 134, pp. 90–103, 2018. [CrossRef] [Google Scholar]
  14. M. Moreno-Benito, P. Agnolucci, and L. G. Papageorgiou, “Towards a sustainable hydrogen economy: Optimisation-based framework for hydrogen infrastructure development,” Comput. Chem. Eng., vol. 102, pp. 110–127, 2017. [CrossRef] [Google Scholar]
  15. J. Kim, Y. Lee, and I. Moon, “Optimization of a hydrogen supply chain under demand uncertainty,” Int. J. Hydrogen Energy, vol. 33, no. 18, pp. 4715–4729, 2008. [CrossRef] [Google Scholar]
  16. M. Dayhim, M. A. Jafari, and M. Mazurek, “Planning sustainable hydrogen supply chain infrastructure with uncertain demand,” Int. J. Hydrogen Energy, vol. 39, no. 13, pp. 6789–6801, 2014. [CrossRef] [Google Scholar]
  17. W. Won, H. Kwon, J. H. Han, and J. Kim, “Design and operation of renewable energy sources based hydrogen supply system: Technology integration and optimization,” Renew. Energy, vol. 103, pp. 226–238, 2017. [CrossRef] [Google Scholar]
  18. L. Welder, D. S. Ryberg, L. Kotzur, T. Grube, M. Robinius, and D. Stolten, “Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany,” Energy, vol. 158, pp. 1130–1149, 2018. [CrossRef] [Google Scholar]
  19. A. Ochoa Bique, L. K. K. Maia, F. La Mantia, D. Manca, and E. Zondervan, “Balancing costs, safety and CO2 emissions in the design of hydrogen supply chains,” Comput. Chem. Eng., vol. 129, 2019. [Google Scholar]
  20. N. Sabio, A. Kostin, G. Guillén-Gosálbez, and L. Jiménez, “Holistic minimization of the life cycle environmental impact of hydrogen infrastructures using multi-objective optimization and principal component analysis,” Int. J. Hydrogen Energy, vol. 37, no. 6, pp. 5385–5405, 2012. [CrossRef] [Google Scholar]
  21. Z. Li, D. Gao, L. Chang, P. Liu, and E. N. Pistikopoulos, “Hydrogen infrastructure design and optimization: A case study of China,” Int. J. Hydrogen Energy, vol. 33, no. 20, pp. 5275–5286, 2008. [CrossRef] [Google Scholar]
  22. S. De-León Almaraz, C. Azzaro-Pantel, L. Montastruc, and M. Boix, “Deployment of a hydrogen supply chain by multi-objective/multi-period optimisation at regional and national scales,” Chem. Eng. Res. Des., vol. 104, pp. 11–31, 2015. [CrossRef] [Google Scholar]
  23. G. Guillen-Gosalbez, F. D. Mele, and I. E. Grossman, “A Bi-Criterion Optimization Approach for the Design and Planning of Hydrogen Supply Chains for Vehicle Use,” AIChE J., vol. 56, no. 3, pp. 650–667, 2010. [Google Scholar]
  24. J. H. Han, J. H. Ryu, and I. B. Lee, “Multi-objective optimization design of hydrogen infrastructures simultaneously considering economic cost, safety and CO2 emission,” Chem. Eng. Res. Des., vol. 91, no. 8, pp. 1427–1439, 2013. [CrossRef] [Google Scholar]
  25. J. O. Robles, C. Azzaro-Pantel, and A. Aguilar-Lasserre, “Optimization of a hydrogen supply chain network design under demand uncertainty by multi-objective genetic algorithms,” Comput. Chem. Eng., vol. 140, 2020. [Google Scholar]
  26. M. Reuß, T. Grube, M. Robinius, and D. Stolten, “A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany,” Appl. Energy, vol. 247, no. December 2018, pp. 438–453, 2019. [CrossRef] [Google Scholar]
  27. C. Wulf et al., “Life Cycle Assessment of hydrogen transport and distribution options,” J. Clean. Prod., vol. 199, pp. 431–443, 2018. [CrossRef] [Google Scholar]
  28. F. Parolin, P. Colbertaldo, and S. Campanari, “Design and Optimization of a Multi-Mode Hydrogen Delivery Infrastructure for Clean Mobility,” accepted paper SDEWES2021.0753 at 16th Conference on Sustainable Development of Energy, Water, and Environment Systems (SDEWES2021), Dubrovink, Croatia, Oct 2021. [Google Scholar]
  29. ESRI, “ESRI Shapefile Technical Description,” 1998. [Google Scholar]
  30. P. Colbertaldo, “Power-to-hydrogen for long-term power and transport sector integration,” Politecnico di Milano, 2019. [Google Scholar]
  31. Il Sole 24 Ore, “Le raffinerie e l’indotto arrancano,” 2014. https://www.infodata.ilsole24ore.com/2014/07/31/le-raffinerie-e-lindotto-arrancano/. [Google Scholar]
  32. P. Colbertaldo, G. Guandalini, G. Lozza, and S. Campanari, “Sizing of integrated solar photovoltaic and electrolysis systems for clean hydrogen production,” in EFC2019 European Fuel Cell Technology & Applications - Piero Lunghi Conference EFC2019, 2019, pp. 2019–2020. [Google Scholar]
  33. European Commission, “Eurostat.” https://ec.europa.eu/eurostat/home. [Google Scholar]
  34. United States Department of Labor, “U.S. Bureau of Labor Statistics.” https://www.bls.gov/. [Google Scholar]
  35. IRENA, “Hydrogen From Renewable Power,” 2018. [Google Scholar]
  36. W. Zappa, M. Junginger, and M. van den Broek, “Is a 100% renewable European power system feasible by 2050?,” Appl. Energy, vol. 233–234, no. November 2018, pp. 1027–1050, 2019. [CrossRef] [Google Scholar]
  37. IRENA, “Renewable Power Generation Costs in 2018,” 2019. [Google Scholar]
  38. IEAGHG, “Techno - Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS,” 2017. [Google Scholar]
  39. M. Reuß, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, and D. Stolten, “Seasonal storage and alternative carriers: A flexible hydrogen supply chain model,” Appl. Energy, vol. 200, pp. 290–302, 2017. [CrossRef] [Google Scholar]
  40. Fuel Cells and Hydrogen 2 Joint Undertaking (FCH JU), “Addendum to the Multi-Annual Work Plan 2014–2020,” 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.