Open Access
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
Article Number 08006
Number of page(s) 5
Section Microbial & Enzymatic Biolectrochemical Systems
Published online 10 January 2022
  1. Dominguez-Benetton, X., Varia, J.C., Pozo, G., Modin, O., Ter Heijne, A., Fransaer, J., Rabaey, K., 2018. Metal recovery by microbial electro-metallurgy. Progress in Materials Science 94, 435–461. [CrossRef] [Google Scholar]
  2. Jiang, Q., Song, X., Liu, J., Shao, Y., He, W., Feng, Y., 2020. In-situ enrichment and removal of Cu(II) and Cd(II) from low-strength wastewater by a novel microbial metals enrichment and recovery cell (MMERC). Journal of Power Sources 451, 227627. [CrossRef] [Google Scholar]
  3. Modin, O., Fuad, N., Rauch, S., 2017. Microbial electrochemical recovery of zinc. Electrochimica Acta 248, 58–63. [CrossRef] [Google Scholar]
  4. Qin, B., Luo, H., Liu, G., Zhang, R., Chen, S., Hou, Y., Luo, Y., 2012. Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresource Technology 121, 458–461. [CrossRef] [PubMed] [Google Scholar]
  5. Song, X., Yang, W., Lin, Z., Huang, L., Quan, X., 2019. A loop of catholyte effluent feeding to bioanodes for complete recovery of Sn, Fe, and Cu with simultaneous treatment of the co-present organics in microbial fuel cells. Science of The Total Environment 651, 1698–1708. [CrossRef] [Google Scholar]
  6. Wang, Q., Huang, L., Quan, X., Zhao, Q., 2017. Preferable utilization of in-situ produced H2O2 rather than externally added for efficient deposition of tungsten and molybdenum in microbial fuel cells. Electrochimica Acta 247, 880–890. [CrossRef] [Google Scholar]
  7. Heijne, A.T., Liu, F., Weijden, R. van der, Weijma, J., Buisman, C.J.N., Hamelers, H.V.M., 2010. Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell. Environ. Sci. Technol. 44, 4376–4381. [CrossRef] [PubMed] [Google Scholar]
  8. Luo, H., Qin, B., Liu, G., Zhang, R., Tang, Y., Hou, Y., 2015. Selective recovery of Cu2+ and Ni2+ from wastewater using bioelectrochemical system. Front. Environ. Sci. Eng. 9, 522–527. [CrossRef] [Google Scholar]
  9. Luo, H., Liu, G., Zhang, R., Bai, Y., Fu, S., Hou, Y., 2014. Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. Journal of Hazardous Materials 270, 153–159. [CrossRef] [PubMed] [Google Scholar]
  10. Hui Guo, Y.K., 2019. Mechanisms of Heavy Metal Separation in Bioelectrochemical Systems and Relative Significance of Precipitation, in: Microbial Electrochemical Technologies. pp. 128–144. [Google Scholar]
  11. Lim, S.S., Fontmorin, J.-M., Pham, H.T., Milner, E., Abdul, P.M., Scott, K., Head, I., Yu, E.H., 2021. Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. Science of The Total Environment 776, 145934. [CrossRef] [Google Scholar]
  12. Wang, X., Li, J., Wang, Z., Tursun, H., Liu, R., Gao, Y., Li, Y., 2016. Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output. Environ Sci Pollut Res 23, 20368–20377. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.