Open Access
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00026
Number of page(s) 8
Published online 17 January 2022
  1. M.J. Li, W.Q. Tao, Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry, Appl. Energy 187 (2017) 203–215 [CrossRef] [Google Scholar]
  2. Z. Ma, W.W. Yang, F. Yuan, B. Jin, Y.L. He, Investigation on the thermal performance of a high-temperature latent heat storage system, Appl. Therm. Eng. 122 (2017) 579–592. [CrossRef] [Google Scholar]
  3. K.B. Tokarska, N.P. Gillett, Cumulative carbon emissions budgets consistent with 1.5 C global warming, Nat. Clim. Change 8 (2018) 296. [CrossRef] [Google Scholar]
  4. Y.L. He, K. Wang, Y. Qiu, B.C. Du, Q. Liang, S. Du, Review of the solar flux distribution in concentrated solar power: non-uniform features, challenges, and solutions, Appl. Therm. Eng. 149 (2019) 448–474. [CrossRef] [Google Scholar]
  5. M.J. Li, Y.L. He, W.Q. Tao, modeling a hybrid methodology for evaluating and forecasting regional energy efficiency in China, Appl. Energy 185 (2017) 1769–1777. [CrossRef] [Google Scholar]
  6. K. Wang, Y.L. He, Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling, Energy Convers. Manage. 135 (2017) 336–350. [CrossRef] [Google Scholar]
  7. M.J. Li, B. Jin, Z. Ma, F. Yuan, Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macro encapsulation of molten salt phase change material, Appl. Energy 221 (2018) 1–15 [CrossRef] [Google Scholar]
  8. M.J. Li, B. Jin, J.J. Yan, Z. Ma, M.J. Li, Numerical and experimental study on the performance of a new two-layered high-temperature packed-bed thermal energy storage system with changed-diameter macro encapsulation capsule, Appl. Therm. Eng. 142 (2018) 830–845. [CrossRef] [Google Scholar]
  9. Z. Ma, M.J. Li, W.W. Yang, Y.L. He, General performance evaluation charts and effectiveness correlations for the design of thermocline heat storage system, Chem. Eng. Sci. 185 (2018) 105–115. [CrossRef] [Google Scholar]
  10. Y. Qiu, M.J. Li, W.Q. Wang, B.C. Du, K. Wang, an experimental study on the heat transfer performance of a prototype molten-salt rod baffle heat exchanger for concentrated solar power, Energy 156 (2018) 63–72 [CrossRef] [Google Scholar]
  11. Y.L. He, Z.J. Zheng, B.C. Du, K. Wang, Y. Qiu, Experimental investigation on turbulent heat transfer characteristics of molten salt in a shell-and-tube heat exchanger, Appl. Therm. Eng. 108 (2016) 1206–1213 [CrossRef] [Google Scholar]
  12. B. Vriesema, Aspects of Molten Fluorides as Heat Transfer Agents for Power Generation [PhD], Delft University of Technology, Delft, Netherlands, 1979. [Google Scholar]
  13. Y.T. Wu, C. Chen, B. Liu, C.F. Ma, Investigation on forced convective heat transfer of molten salts in circular tubes, Int. Commun. Heat Mass Transfer 39 (2012) 1550–1555. [CrossRef] [Google Scholar]
  14. J. Qian, Q. Kong, H. Zhang, W. Huang, W. Li, Performance of a gas cooled molten salt heat exchanger, Appl. Therm. Eng. 108 (2016) 1429–1435. [CrossRef] [Google Scholar]
  15. Y.S. Chen, Y. Wang, J.H. Zhang, X.F. Yuan, J. Tian, Z.F. Tang, et al., Convective heat transfer characteristics in the turbulent region of molten salt in concentric tube, Appl. Therm. Eng. 98 (2016) 213–219. [CrossRef] [Google Scholar]
  16. B. Liu, Y.T. Wu, C.F. Ma, M. Ye, H. Guo, Turbulent convective heat transfer with molten salt in a circular pipe, Int. Commun. Heat Mass Transfer 36 (2009) 912–916. [CrossRef] [Google Scholar]
  17. L.K. Zhu, L.J. Qiao, X.Y. Li, B.Z. Xu, W. Pan, L. Wang, Alex A. Volinsky, Analysis of the tube-sheet cracking in slurry oil steam generators, Eng. Fail. Anal. 34 (2013) 379–386 [CrossRef] [Google Scholar]
  18. J. Mao, D. Tang, S. Bao, L. Luo, Z. Gao, High temperature strength and multiaxial fatigue life assessment of a tubesheet structure, Eng. Fail. Anal. 68 (2016) 10–21. [CrossRef] [Google Scholar]
  19. S. Xu, Y. Zhao, Using FEM to determine the thermo-mechanical stress in tube to tube–sheet joint for the SCC failure analysis, Eng. Fail. Anal. 34 (2013) 24–34 [CrossRef] [Google Scholar]
  20. W. Gao, Y. Lia, L. Kong, Numerical investigation of erosion of tubesheet and tubes of a shell and tube heat exchanger, Comput. Chem. Eng. 96 (2017) 115–127 [CrossRef] [Google Scholar]
  21. S. Rongjuan, W. Weiqiang, L. Yan, L. Dong, L. Wei, Root cause analysis of stress corrosion at tube-to-tubesheet joints of a waste heat boiler, Eng. Fail. Anal. 45 (2014) 398–405. [CrossRef] [Google Scholar]
  22. R. Patil, S. Anand, Thermo-structural fatigue analysis of shell and tube type heat exchanger, Int. J. Press. Vessel. Pip. 155 (2017) 35–42 [CrossRef] [Google Scholar]
  23. S. Xu, C. Wang, W. Wang, Failure analysis of stress corrosion cracking in heat exchanger tubes during start-up operation, Eng. Fail. Anal. 51 (2015) 1–8 [CrossRef] [Google Scholar]
  24. Z. Wang, Q. Shi, Q. Li, L. Wan, H. Tang, Transient thermal stress and temperature change rate analysis of fixed tubesheet, ASME Pressure Vessels and Piping Conference, vol. 3A, 2018. [Google Scholar]
  25. Y. Wang, X. Gu, Z. Jin, K. Wang, Characteristics of heat transfer for tube banks in crossflow and its relation with that in shell-and-tube heat exchangers, Int. J. Heat Mass Transf. 93 (2016) 584–594. [CrossRef] [Google Scholar]
  26. J.S. Corte, J.M.A. Rebello, M.C.L. Areiza, S.S.M. Tavares, M.D. Araujo, Failure analysis of AISI 321 tubes of heat exchanger, Eng. Fail. Anal. 56 (2015) 170–176. [CrossRef] [Google Scholar]
  27. M. Mellal, R. Benzeguir, D. Sahel, H. Ameur, Hydro-thermal shell-side performance evaluation of a shell and tube heat exchanger under different baffle arrangement and orientation, Int. J. Therm. Sci. 121 (2017) 138–149. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.