Open Access
Issue
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00030
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202233600030
Published online 17 January 2022
  1. Palacios D., Castro D., Perez, Urbani F., Sajo-Bohus L., LaBrecque J., Environmental radioactivity near the central coast of Venezuela and its radiological impact. Jour. Radioanal. Nucl. Chem., v.241, pp.69–73 (1998). [Google Scholar]
  2. Tahir S., Jamil K., Zaidi J., Arif M., Ahmed N., Ahmad S., Measurements of activity concentrations of naturally occurring radionuclides in soil samples from Punjab Province of Pakistan and assessment of radiological hazards, Radiat. Prot. Dosimetry, v. 113(4), pp.421–427 (2005). [CrossRef] [PubMed] [Google Scholar]
  3. Baggoura B., Noureddine A., Benkrid M., Level of natural and artificial in Algeria radioactivity. Appld. Radiat. Isot., v.49(7), pp.867–873 (1998). [CrossRef] [Google Scholar]
  4. Sroor A., El-Bahi S., Ahmed F, Abdel-Haleem A., Natural radioactivity and radon exhalation rate of soil in southern Egypt, Appl. Radiat. Isot., v.55, pp.873–879 (2001). [CrossRef] [Google Scholar]
  5. Bellia S., Brai M., Hauser S., Puccio P., Rizzo A., Natural radioactivity in a volcanic island Ustica, Southern Italy. Applied. Radiat. Isot., v.48, pp.287–293 (1997). [CrossRef] [Google Scholar]
  6. Florou H., Trabidou G., and Nicolaou G., An assessment of the external radiological impact in areas of Greece with elevated natural radioactivity. Jour. Environ. Radioact., v.93, pp.74–83 (2007). [CrossRef] [Google Scholar]
  7. Veiga M., Baker R., Protocols for environmental and health assessment of mercury released by artisanal and small-scale gold miners. Vienna: GEF/UNDP/UNIDO (2004). [Google Scholar]
  8. British standard, Measurement of radioactivity in the environment-soil. BS ISO18589 – 1: 2005 (2005). [Google Scholar]
  9. UNSCEAR, Sources and effects of ionizing radiation. United Nations scientific committee on the effects of atomic radiation. New York, USA: United Nations Publication (2000). [Google Scholar]
  10. Mahmoud P.A., Aghajani M., Nabipour I., Assadi M., Annual effective dose from environmental gamma radiation in Bushehr city. J. Environ. Health Sci. Eng. 12: 4 (2014). [Google Scholar]
  11. ICRP, 1990 Recommendations of the International Commission on Radiological Protection. ICRP. Ann. ICRP 21, 1–3 (1991). [CrossRef] [Google Scholar]
  12. Beretka J., Matthew P., Natural radioactivity of Australian building materials, industrial waste and by-products. Health Phys. 48, 87-95 (1985). [CrossRef] [PubMed] [Google Scholar]
  13. NEA-OECD, Exposure to radiation from natural radioactivity in building materials. In: Report by the group of experts of the OECD Nuclear Energy Agency (NEA), Paris (1979). [Google Scholar]
  14. Higgy R., El-Tahawy M., Abdel-Fattah A., Al-Akabawy V., Radionuclide content of building materials and associated gamma dose rates in Egyptian dwellings. J Environ Radioact 50:253–261 (2000). [CrossRef] [Google Scholar]
  15. European Commission, European Commission report on radiological protection principles concerning the natural radioactivity of building materials, Radiat. Protect. 112 (1999). [Google Scholar]
  16. Krieger V., Radioactivity of construction materials, BetonwerkFertigteil Tech. 47:468–473 (1981). [Google Scholar]
  17. Mustapha A., Patel J., Rathore I., Assessment of human exposure to natural sources of radiation in Kenya, Radiat. Prot. Dosim. 82(4):285–292 (1999). [CrossRef] [Google Scholar]
  18. Ohlsen H., Determination of the mean population burden from natural external radiation in the German Democratic Republic. SZE-14/69 and AEC-tr-7216 (1971). [Google Scholar]
  19. Avadhani D., Mahesh H., Somashekarappa H., Karunakara N., Narayana Y., Siddappa K., Natural radioactivity in the environment of Goa of south west coast of India. J Radiat Protect Environ 24 (Suppl):136–142 (2001). [Google Scholar]
  20. Abe S., Fujitaka K., Natural radiation in Japan. In: Gesell TF, Lowder WM (eds) Natural radiation environment III, vol 2. USDOE, CONF-780422. Technical Information Centre, Oak Ridge, TN, pp 1034–1048 (1980). [Google Scholar]
  21. Karunakara N., Somashekarappa H., Avadhani D., Mahesh H., Narayana Y., Siddappa K., 226Ra, 232Th and 40K distribution in the environment of Kaiga of south west coast of India. Health Phys. 80:470–476 (2001). [CrossRef] [PubMed] [Google Scholar]
  22. Herbst W., Investigation of environmental radiation and its variability. In: Adam JAS, Lowder W.M. (eds) Natural radiation environment. University of Chicago Press, Chicago, pp 781–796 (1964). [Google Scholar]
  23. Merdanoglu B., Altinsoy N., Radioactivity concentrations and dose assessment for soil samples from Kestanbol granite area Turkey. Radiat. Protect. Dosim. 121:399–405 (2006). [CrossRef] [PubMed] [Google Scholar]
  24. Shiva Prasad N., Nagaiah N., Ashok G., Karanukara N., Concentrations of 226Ra, 232Th and 40K in the soils of Bangalore Region, India. Health Phys. 94(3):264–271 (2008). [CrossRef] [PubMed] [Google Scholar]
  25. Stranden E., Some aspects on radioactivity of building materials, Phys. Nor. 8:167–173 (1976). [Google Scholar]
  26. Isinkaye M., Radiometric assessment of natural radioactivity levels of bituminous soil in Agbabu, southwest Nigeria. Radiat Meas. 43:125–128 (2008). [CrossRef] [Google Scholar]
  27. Jibiri N., Farai I., Alausa S., Activity concentrations of 226Ra, 228Th and 40K in different food crops from a high background radiation area in Bitsichi, Jos Plateau, Nigeria. Radiat. Environ Biophys. 46:53–59 (2007). [CrossRef] [PubMed] [Google Scholar]
  28. Ajayi O., Ibikunle S., Ojo T., An assessment of natural radioactivity of soils and its external radiological impact in southwestern Nigeria. Health Phys 94(6):558–566 (2008). [CrossRef] [PubMed] [Google Scholar]
  29. Ajayi O., Measurement of activity concentrations of 40K, 226Ra and 232Th for assessment of radiation hazards from soils of the southwestern region of Nigeria, Radiat Environ Biophys, 48:323–332, DOI 10.1007/s00411-009-0225-0 (2009). [CrossRef] [PubMed] [Google Scholar]
  30. Dallou G., Ngoa E., Ndjana Nkoulou II J., Saïdou, Tchuente Siaka Y., Bongue D., Kwato Njock M., NORM Measurements and Radiological Hazard Assessment in the Gold Mining Areas of Eastern Cameroon, Radiation Environment and Medicine 2017, Vol.6, No.1 22–28 (2016). [Google Scholar]
  31. Raghavendra T., Vishwaprasad G., Kalyani T., Vijayalakshmi V., Himabindu J., Arunachalam P., Padmasavithri, Vinod Kumar R., Tripathi., Assessment of Natural Radioactivity in Soils around the Proposed Uranium Mining Site of Lambapur – Peddagattu and Seripally, India, Journal Geological Society of India, Vol.93, pp.223-227 (2009). [Google Scholar]
  32. United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR) Sources and effects of ionizing radiation. UN, New York (1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.