Open Access
Issue
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00044
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202233600044
Published online 17 January 2022
  1. S. Motahhir, A. El Hammoumi, A. El Ghzizal, “The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm” Journal of cleaner production, vol. 246, p. 118983 (2020) https://doi.org/10.1016/j.jclepro.2019.118983 [CrossRef] [Google Scholar]
  2. P. Pandiyan, S. Saravanan, N. Prabhakaran, R. Tiwari, T. Chinnadurai, N. R. Babu, E. Hossain, “Implementation of Different MPPT Techniques in Solar PV Tree under Partial Shading Condition “, Sustainability, vol.713. p.13 (2021). https://doi.org/10.3390/su13137208 [Google Scholar]
  3. I. Nassar-Eddine, A. Obbadi, K. Et-Torabi, H. Mokhliss, A. Elamiri, R. Rmaily, Y. Errami, A. El Fajri, S. Sahnoun, M. Agunaou,”A new Fuzzy Logic architecture to control the DC-bus voltage in grid connected photovoltaic system”, in Proceedings of the International Conference on International Conference of Computer Science and Renewable Energies (ICCSRE), (2019, July). https://doi.org/10.1109/ICCSRE.2019.8807457 [Google Scholar]
  4. A. Abo-Sennah, M. A. El-Dabah, A. El-Biomey Mansour, “Maximum power point tracking techniques for photovoltaic systems: a comparative study”, International Journal of Electrical and Computer Engineering (IJECE), vol. 11, p. 2088-8708 (2021) http://doi.org/10.11591/ijece.v11i1. pp57-73 [CrossRef] [Google Scholar]
  5. F. Tsai, C. S Tseng, K. T Hung., S. H Lin, “A Novel DSP-Based MPPT Control Design for Photovoltaic Systems Using Neural Network Compensator †” Energies, vol.14, p. 11 (2021) https://doi.org/10.3390/en14113260 [Google Scholar]
  6. K. H. Chao, M. N. Rizal, “A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions” Energies, vol.14, p.10 (2021). https://doi.org/10.3390/en14102902 [Google Scholar]
  7. S. Messalti, A. Harrag, A Loukriz, “A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation”, Renewable and Sustainable Energy Reviews, vol.68, p.221–233 (2017) https://doi.org/10.1016/j.rser.2016.09.131 [CrossRef] [Google Scholar]
  8. K. Et-torabi, I. Nassar-eddine, A. Obbadi, Y. Errami, R. Rmaily, S. Sahnoun, A. El fajri, M. Agunaou, “Parameters estimation of the single and double diode photovoltaic models using a Gauss–Seidel algorithm and analytical method: A comparative study”, Energy Conversion and Management, vol.148, p. 1041-1054 (2017) https://doi.org/10.1016/j.enconman.2017.06.064 [CrossRef] [Google Scholar]
  9. A. Hassoune, M. Khafallah, A. Mesbahi, D. Breuil, “Control strategy for a boost converter operating as a battery charger of photovoltaic-grid system for electric vehicles charging station”, in Proceedings of the International Conference on Automation, Control Engineering and Computer Science (ACECS17), Tangier, 2017 http://dx.doi.org/10.13140/RG.2.2.29850.47047 [Google Scholar]
  10. M. M. Shebani, T. Iqbal, J. E. Quaicoe, “Comparing bisection numerical algorithm with fractional short circuit current and open circuit voltage methods for MPPT photovoltaic systems”, in Proceedings of the International Conference on Electrical Power and Energy Conference (EPEC), (2016, October) https://doi.org/10.1109/EPEC.2016.7771689 [Google Scholar]
  11. M. Mudassar, M. R. Fazal, M. U. Asghar, M. Bilal, R. Asghar, “Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic system”, Journal of King Saud University-Engineering Sciences, vol.32, p. 7 (2020) https://doi.org/10.1016/j.jksues.2018.04.006 [CrossRef] [Google Scholar]
  12. V. Viswambaran, A. Bati, E. Zhou, “Review of AI based maximum power point tracking techniques & performance evaluation of artificial neural network based MPPT controller for photovoltaic systems”, International Journal of Advanced Science and Technology·, vol. 29, p. 8159-8171(2020) [Google Scholar]
  13. S. Gowid, A. Massoud, “A robust experimentalbased artificial neural network approach for photovoltaic maximum power point identification considering electrical, thermal and meteorological impact”, Alexandria Engineering Journal, vol. 59, p.3699-3707 (2020) https://doi.org/10.1016/j.aej.2020.06.024 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.