Open Access
Issue
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00057
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202233600057
Published online 17 January 2022
  1. Y.-K. Park, G.-N. Kim, et S.-Y. Park, « Novel Structure and Thermal Design and Analysis for CubeSats in Formation Flying », Aerospace, vol. 8, no 6, p. 150, 2021. [CrossRef] [Google Scholar]
  2. R. Oliver, B. G. Crawford, et G. Burrow, « Optimized undergraduate thermal analysis of cube satellites », in 13th International Energy Conversion Engineering Conference, 2015, p. 3986. [Google Scholar]
  3. C. D’Souza and R. Zanetti, « A First Look at the Navigation Design and Analysis for the Orion Exploration Mission 2 », 2017. [Google Scholar]
  4. A. Akka and F. Benabdelouahab, « PASSIVE THERMAL ANALYSIS OF A CUBESAT BY A FINITE ELEMENT MODELING », JPHMT, vol. 21, no 1, p. 133–149, Oct. 2020, doi: 10.17654/HM021010133. [CrossRef] [Google Scholar]
  5. A. Akka and F. Benabdelouahab, “Nanosatellite: A Progressive Vision of Performing Passive Thermal Control”. in AIP Conference Proceedings, AIP Publishing LLC, vol. 2399, (In Press). [Google Scholar]
  6. J. Rotteveel and A. R. Bonnema, « Thermal control issues for nano-and picosatellites », in 57th International Astronautical Congress, 2005, p. B5-6. [Google Scholar]
  7. C. Shengzhu, C. Xuekang, W. Xiyuan, H. Chuang, and Y. Jianping, « Novel type of micro-variable radiator for spacecraft thermal control », Chin. J. Vac. Sci. Technol, vol. 8, 2013. [Google Scholar]
  8. V. L. Pisacane, Fundamentals of space systems. Johns Hopkins University/Appli, 2005. [Google Scholar]
  9. M. Bulut, Ö. R. Sözbir, and N. Sözbir, « Thermal Control of Turksat 3U Nanosatellite », 2017. [Google Scholar]
  10. A. Akka, F. Benabdelouahab and R. Yerrou, EVALUATING THE TEMPERATURE TOGGLING OF A NANOSATELLITE THRU A PRELIMINARY PASSIVE THERMAL ANALYSIS, JP Journal of Heat and Mass Transfer 24(2), (In Press). [Google Scholar]
  11. G. Salazar-Salinas, E. Botello-Ramírez, and E. Avalos-Gauna, « Thermal Analysis of a 3UCubesat, a Case Study of Pakal Satellite », presented at The International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT’21), Virtual Conference, May 2021. doi: 10.11159/ffhmt21.137. [Google Scholar]
  12. P. Shinde, A. Quintero, I. Tansel, et S. Tosunoglu, « CubeSat Thermal Analysis », presented at 30th Florida Conference on Recent Advances in Robotics, Florida Atlantic University, Boca Raton, Florida, May 2017. [Google Scholar]
  13. M. Donabedian and D. G. Gilmore, « Spacecraft thermal control handbook », Aerospace Press, p. 21–69, 2003. [Google Scholar]
  14. Philippe. Poinas, « Satellite Thermal Control Engineering », in SME04, ESTEC Thermal & Structure Division, June 2004, p. 66. [Google Scholar]
  15. Specialists in materials and applications, « Spacecraft Thermal Control and Conductive Paints/Coatings and Services Catalog ». AZ Technology, 2008, [On line]. Available at: http://www.aztechnology.com. [Google Scholar]
  16. B. Končar and L. Klobučar, « Use of CFD Codes for Calculation of Radiation Heat Transfer: From Validation to Application », Heat Transfer-Models, Methods and Applications, Intech Open, 2018. [Google Scholar]
  17. P. Vueghs, H. P. De Koning, O. Pin, and P. Beckers, « Use of geometry in finite element thermal radiation combined with ray tracing », Journal of computational and applied mathematics, vol. 234, no 7, p. 2319–2326, 2010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.