Open Access
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00063
Number of page(s) 8
Published online 17 January 2022
  1. Agence Internationale de l’Energie, World Energy Outlook 2007 [Google Scholar]
  2. [Google Scholar]
  3. [Google Scholar]
  4. M.A. Green, K. Emery, Y. Hishikawa et W. Warta, Progress in Photovoltaics: Research and Applications 2008, 16,61 [Google Scholar]
  5. Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, Nat. Photonics, 2012, 6, 591–595. [CrossRef] [Google Scholar]
  6. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S.-W. Tsang, T.-H. Lai and J. R. Reynolds, Nat. Photonics, 2012, 6, 115–120. [CrossRef] [Google Scholar]
  7. Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119-128. [CrossRef] [PubMed] [Google Scholar]
  8. Z-P. Yu, K. Yan, W. Ullah, H. Chen, and CH-Z Li. ACS Appl. Polym. Mater. [Google Scholar]
  9. S-L Chang, K-E Hung, Fong-Yi Cao, K-H Huang, Ch-Sh Hsu, Ch-Yi Liao, Ch-Hao Lee, and Yen-Ju Cheng. ACS Appl. Mater. Interfaces 2019, 11, 33179−33187. 10.1021/acsami.9b08462. [CrossRef] [PubMed] [Google Scholar]
  10. Malki et al., International Journal of Advanced Research in Computer Science and Software Engineering 8(12) ISSN(E): 2277-128X, ISSN(P): 2277-6451, pp. 38-51. [Google Scholar]
  11. Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131-142. [CrossRef] [Google Scholar]
  12. Ye, L.; Hu, H.; Ghasemi, M.; Wang, T.; Collins, B. A.; Kim, J.- H.; Jiang, K.; Carpenter, J. H.; Li, H.; Li, Z.; McAfee, T.; Zhao, J.; Chen, X.; Lai, J. L. Y.; Ma, T.; Bredas, J.-L.; Yan, H.; Ade, H. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 2018, 17, 253-260. [CrossRef] [PubMed] [Google Scholar]
  13. Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018, 118, 3447-3507. [CrossRef] [PubMed] [Google Scholar]
  14. Chao, P.; Chen, H.; Zhu, Y.; Lai, H.; Mo, D.; Zheng, N.; Chang, X.; Meng, H.; He, F. A Benzo [1,2-b:4,5 c′] Dithiophene-4,8- Dione-Based Polymer Donor Achieving an Efficiency Over 16%. Adv. Mater. 2020, 32, 1907059. [CrossRef] [Google Scholar]
  15. Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272-275. [CrossRef] [Google Scholar]
  16. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with ElectronDeficient Core. Joule 2019, 3, 1140-1152. [CrossRef] [Google Scholar]
  17. Yu, R.; Yao, H.; Cui, Y.; Hong, L.; He, C.; Hou, J. Improved Charge Transport and Reduced Nonradiative Energy Loss Enable Over 16% Efficiency in Ternary Polymer Solar Cells. Adv. Mater. 2019, 31, 1902302. [CrossRef] [Google Scholar]
  18. Li, S.; Li, C.-Z.; Shi, M.; Chen, H. New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives. ACS Energy Lett. 2020, 5, 1554-1567. [CrossRef] [Google Scholar]
  19. A.J. Attias, Techniques de L’ingénieur, dossier E1862. [Google Scholar]
  20. T. Ilhem, Etude, Mod`elisation, Simulation de cellule solaire organique, Unit´e de Recherche des Matériaux et Energies Renouvelables (URMER), BP 119, 13000 Tlemcen – Algérie, 2018 [Google Scholar]
  21. Z. El Malki, A. El karkri, M. Bouachrine, F.S. Spirau3. Springer Nature Switzerland AG 2020, [Google Scholar]
  22. M. Oukachmih, Thèse 2003, Université Toulouse-Paul Sabatier. [Google Scholar]
  23. C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez et J.C. Hummelen, Advanced Functional Materials 2001, 11, 374 [CrossRef] [Google Scholar]
  24. M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger et C.J. Brabec, Advanced Materials 2006, 18, 789; [CrossRef] [Google Scholar]
  25. Gunes, S.; Neugebauer, H.; Sariciftci, N. S. J. Chem. Rev. 2006, 107, 1324. [CrossRef] [Google Scholar]
  26. Chattopadhyay, D.; Lastella, S.; Kim, S.; Papadimitrakopoulos, F. J. Am. Chem. Soc. 2002, 124, 5, 728. [CrossRef] [CrossRef] [PubMed] [Google Scholar]
  27. A. K. K. Kyaw, D. H. Wang, D. Wynands, J. Zhang, T. Q. Nguyen, G. C. Bazan and A. J. Heeger, Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO)in solution processed small molecule solar cells, Nano Lett., 2013, 13, 3796–3801. [CrossRef] [PubMed] [Google Scholar]
  28. J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li and Y. Chen, Solution processed and high-performance organic solar cells using small molecules with a benzodithiophene unit, J. Am. Chem. Soc., 2013, 135, 8484–8487. [CrossRef] [PubMed] [Google Scholar]
  29. B. Kan, Q. Zhang, M. Li, X. Wan, W. Ni, G. Long, Y. Wang, X. Yang, H. Feng and Y. Chen, Solution processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%, J. Am. Chem. Soc., 2014, 136, 15529–15532. [CrossRef] [PubMed] [Google Scholar]
  30. J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su and Y. Chen, Small molecule based on benzo[1,2- b:4,5-b0] dithiophene unit for high performance solution processed organic solar cells, J. Am. Chem. Soc., 2012, 134, 16345–16351. [CrossRef] [PubMed] [Google Scholar]
  31. Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M. Li, Z. Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T. P. Russell and Y. Chen, Small molecule solar cells with efficiency over 9%, Nat. Photonics, 2015, 9, 35–41. [CrossRef] [Google Scholar]
  32. B. Kan, M. Li, Q. Zhang, F. Liu, X. Wan, J. Wang, W. Ni, G. Long, X. Yang, H. Feng, Y. Zuo, M. Zhang, F. Huang, Y. Cao, T. P. Russell and Y. A. Chen, Series of simple oligomer-like small molecules based on oligothiophenes for solution processed solar cells with high efficiency, J. Am. Chem. Soc., 2015, 137, 3886–3893. [CrossRef] [PubMed] [Google Scholar]
  33. Y. Liu, C. Chen, Z. Hong, J. Gao, Y. Yang, H. Zhou, L. Dou, G. Li and Y. Yang, Solution processed small molecule solar cells: breaking the 10% power conversion efficiency, Sci. Rep., 2013, 3, 3356. [CrossRef] [Google Scholar]
  34. Heliatek GmbH, Heliatek consolidates its technology leadership by establishing a new world record for organic solar technology with a cell efficiency of 12%, available at, January,2013. [Google Scholar]
  35. V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T.Rispens, W. J. H. Verhees and M. M. Wienk, « Electron transport in a methanofullerene », Advanced Functional Materials 2003; 13(1) : 43-46. [CrossRef] [Google Scholar]
  36. T. B. Singh, N. Marjanović, G. J. Matt, S. Günes, N. S. Sariciftci, A. Montaigne Ramil, A. Andreev, H. Sitter, R. Schwödiauer and S. Bauer, « High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films », Organic Electronics 2005; 6(3) : 105-110. [CrossRef] [Google Scholar]
  37. M. T. Rispens, A. Meetsma, R. Rittberger, C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, « Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM ‘plastic’ solar cells », Chemical Communications 2003; 17: 2116-2118. [CrossRef] [Google Scholar]
  38. L. M. Popescu, Fullerene based organic solar cells, PhD thesis, University of Groningen, Netherlands, 2008. [Google Scholar]
  39. A. El Karkri, Z. El Malki, M. Bouachrine, F. Serein-Spirauc and J-M Sotiropoulosd. RSC Adv., 2020, 10, 18816. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.