Open Access
Issue |
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
|
|
---|---|---|
Article Number | 00065 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202233600065 | |
Published online | 17 January 2022 |
- O. Drzyzga, A. Prieto, Microbial biotechnology 12, 66 (2019) [CrossRef] [PubMed] [Google Scholar]
- S. Dong, P. Wang, K. Abbas, Computer Science Review 40, 100379 (2021) [CrossRef] [Google Scholar]
- C.C. Aggarwal et al., Springer 10, 978 (2018) [Google Scholar]
- J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in 2009 IEEE conference on computer vision and pattern recognition (Ieee, 2009), pp. 248–255 [CrossRef] [Google Scholar]
- A. Aoulalay, N. EL MAKHFI, M.C. ABOUNAIMA, M. MASSAR, Classification of Moroccan Decorative Patterns Based on Machine Learning Algorithms, in 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS) (IEEE, 2020), pp. 1–7 [Google Scholar]
- C. Liu, L. Sharan, E.H. Adelson, R. Rosenholtz, Exploring features in a bayesian framework for material recognition, in 2010 ieee computer society conference on computer vision and pattern recognition (IEEE, 2010), pp. 239–246 [Google Scholar]
- I. Badami, K. Reinhard, Material recognition: Bayesian inference or SVMs?, in Seminar on Computer Graphics (CESCG) (Citeseer, 2012) [Google Scholar]
- P. Bian, W. Li, Y. Jin, R. Zhi, EURASIP Journal on Image and Video Processing 2018, 1 (2018) [CrossRef] [Google Scholar]
- P. Wieschollek, H. Lensch, arXiv preprint arXiv:1609.06188 (2016) [Google Scholar]
- F.A. Azis, H. Suhaimi, E. Abas, Waste Classification using Convolutional Neural Network, in Proceedings of the 2020 2nd International Conference on Information Technology and Computer Communications (2020), pp. 9–13 [CrossRef] [Google Scholar]
- A. Krizhevsky, I. Sutskever, G.E. Hinton, Communications of the ACM 60, 84 (2017) [CrossRef] [Google Scholar]
- M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in European conference on computer vision (Springer, 2014), pp. 818–833 [Google Scholar]
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition (2015), pp. 1–9 [Google Scholar]
- K. Simonyan, A. Zisserman, arXiv preprint arXiv:1409.1556 (2014) [Google Scholar]
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778 [Google Scholar]
- S.J. Pan, Q. Yang, 22 (10): 1345 1359 (2010) [Google Scholar]
- L. Torrey, J. Shavlik, IGI Global 3, 17 (2009) [Google Scholar]
- M. Yang, G. Thung, CS229 Project Report 2016 (2016) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.