Open Access
Issue |
E3S Web Conf.
Volume 338, 2022
7th International Conference on Environmental Science and Material Application (ESMA 2021)
|
|
---|---|---|
Article Number | 01040 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/202233801040 | |
Published online | 20 January 2022 |
- Liuchen Zhao. Bactericidal properties of bisdecyl dimethyl ammonium formate and its composite system[D]. China Daily Chemical Industry Research Institute, 2017. [Google Scholar]
- Large, E. C. Control of Potato Blight (Phytophthora infestans) by Spraying with Suspensions of Metallic Copper[J]. Nature, 1943, 151(3820): 195–206. [Google Scholar]
- Melnikov N. N., Gunther F. A., Gunther J. D. Chemistry of pesticides[M]. Residue Reviews, 1971, 36(1). [PubMed] [Google Scholar]
- Klittich C. J. Milestones in Fungicide Discovery: Chemistry that Changed Agriculture[J]. Plant Health Progress, 2008, 9(1):1–8. [CrossRef] [Google Scholar]
- Woolley D. W., Pringle A. Relationship of chemical structure to antibacterial activity among analogues of dimethyldiaminobenzene[J]. Journal of Biological Chemistry, 1952, 194(2): 729–746. [CrossRef] [Google Scholar]
- Janna H., Scrimshaw M. D., Williams R. J., et al. From Dishwasher to Tap Xenobiotic Substances Benzotriazole and Tolyltriazole in the Environment[J]. Environmental ence & Technology, 2011, 45(9): 3858–3864. [CrossRef] [PubMed] [Google Scholar]
- Dooley, M., et al. Effect of azole fungicide mixtures, alternations and dose on azole sensitivity in the wheat pathogenZymoseptoria tritici[J]. Plant Pathology, 2015.65(1):124–136. [Google Scholar]
- Giavini E., Menegola E. Are azole fungicides a teratogenic risk for human conceptus[J]. Toxicology Letters, 2010, 198(2): 106–111. [CrossRef] [PubMed] [Google Scholar]
- Brauer V. S., Rezende C. P., Pessoni A. M., et al. Antifungal Agents in Agriculture: Friends and Foes of Public Health[J]. Biomolecules, 2019, 9(10): 521534. [CrossRef] [Google Scholar]
- Escher B. I., Baumgartner R., Koller M., et al. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater[J]. Water Research, 2011, 45(1): 75–92. [CrossRef] [PubMed] [Google Scholar]
- Thomas K. V., Hilton M. J. The occurrence of selected human pharmaceutical compounds in UK estuaries [J]. Marine Pollution Bulletin, 2004, 49(5/6): 436–444. [CrossRef] [PubMed] [Google Scholar]
- Hof H. Critical Annotations to the Use of Azole Antifungals for Plant Protection[J]. Antimicrobial Agents & Chemotherapy, 2001, 45(11): 87–90. [Google Scholar]
- David, Allen, Dustin, et al. Azole antifungals: 35 years of invasive fungal infection management: Expert Review of Anti-infective Therapy: Vol 13, No 6[J]. Expert Review of Anti Infective Therapy, 2015.13(6):787–798. [CrossRef] [PubMed] [Google Scholar]
- Wishart D. S., Knox C., Guo A. C., et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets[J]. Nucleic Acids Research, 2007, 36(Database): D901–D906. [Google Scholar]
- Autrup H. SCCP (Scientific Committee on Consumer Products) / SCHER (Scientific Committee on Health& Environment Risks) / SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks) opinion on:Risk assessment methodologies and approaches for genotoxic and carcinogenic substances[J]. Radiographics A Review Publication of the Radiological Society of North America Inc, 2009, 22(2): e4. [Google Scholar]
- Gouin T., Egmond R. V., Price O. R., et al. Prioritising chemicals used in personal care products in China for environmental risk assessment: Application of the RAIDAR model[J]. Environmental Pollution, 2012, 165(Jun.): 208–214. [CrossRef] [Google Scholar]
- Kathiravan M. K., Salake A. B., Chothe A. S., et al. The biology and chemistry of antifungal agents: a review[J]. Bioorg Med Chem, 2012, 20(19): 56785698. [CrossRef] [PubMed] [Google Scholar]
- Roemer T., Krysan D. J. Antifungal Drug Development: Challenges, Unmet Clinical Needs, and New Approaches[J]. Cold Spring Harbor Perspectives in Medicine, 2014, 4(5): a019703–a019703. [CrossRef] [PubMed] [Google Scholar]
- Perlroth J., Choi B., Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment[J]. Medical Mycology, 2007, 45(4): 321–346. [CrossRef] [PubMed] [Google Scholar]
- Wróbel T. M., Kosikowska U., Kaczor A. A., et al. Synthesis, Structural Studies and Molecular Modelling of a Novel Imidazoline Derivative with Antifungal Activity[J]. Molecules, 2015, 20(8): 6176. [Google Scholar]
- Shafiei M., Peyton L., Hashemzadeh M., et al. History of the development of Antifungal azoles: A review on structures, SAR, and mechanism of action[J]. Bioorganic Chemistry, 2020: 104–240. [Google Scholar]
- Jingxiang Zhou, Tao Yun, Quan Huang, et al. Comparative study on digestive enzyme activities of common carp, yellow croaker, mulberry and walleye[J]. Journal of Jilin Agricultural University, 2001, 23(1): 94–96. [Google Scholar]
- Zhjiqiang Bian, Jin Zhang, Tao Wang, et al. Characteristics and mechanism of combined toxicity of carbamate pesticides to Chlorella pyrenoidosa [J]. Acta Ecotoxicology, 2019, 14(4): 150–162. [Google Scholar]
- Renlong Cheng. Two-stage model predicts time-dependent mixed toxicity of antibiotics to Chlorella pyrenoidea [D]. Anhui University of Architecture, 2016. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.