Open Access
Issue |
E3S Web Conf.
Volume 343, 2022
52nd AiCARR International Conference “HVAC and Health, Comfort, Environment - Equipments and Design for IEQ and Sustainability”
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 14 | |
Section | Research, Energy Efficiency and Sustainability | |
DOI | https://doi.org/10.1051/e3sconf/202234301003 | |
Published online | 08 March 2022 |
- P.O. Fanger, Calculation of thermal comfort: introduction of a basic comfort equation, ASHRAE Trans., 73, III.4.1-III.4.20 (1967) [Google Scholar]
- P.O. Fanger, L. Banhidi, B.W. Olesen, G. Langkilde, Comfort limits for heated ceilings, ASHRAE Trans., 86, 141–156 (1980) [Google Scholar]
- P.O. Fanger, B.M. Ipsen, G. Langkilde, B.W. Olesen, N.K. Christensen, S. Tanabe, Comfort limits for asymmetric thermal radiation, Energy Build., 8, 225–236 (1985) [Google Scholar]
- X. Zhou, Y. Liu, M. Luo, L. Zhang, Q. Zhang, X. Zhang, Thermal comfort under radiant asymmetries of floor cooling system in 2 h and 8 h exposure durations, Energy Build., 188–189, 98–110 (2019) [Google Scholar]
- S. Olesen, J.J. Bassing, P.O. Fanger, Physiological comfort conditions at sixteen combinations of activity, clothing, air velocity and ambient temperature, ASHRAE Trans., 78, 199–206 (1972) [Google Scholar]
- L. Schellen, W.D. van Marken Lichtenbelt, M.G.L.C. Loomans, J. Toftum, M.H. de Wit, Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition, Indoor Air., 20, 273–283 (2010) [Google Scholar]
- C. Cen, Y. Jia, K. Liu, R. Geng, Experimental comparison of thermal comfort during cooling with a fan coil system and radiant floor system at varying space heights, Build. Environ., 141, 71–79 (2018) [Google Scholar]
- H. Sun, Z. Yang, B. Lin, W. Shi, Y. Zhu, H. Zhao, Comparison of thermal comfort between convective heating and radiant heating terminals in a winter thermal environment: A field and experimental study, Energy Build., 224, 110239 (2020) [Google Scholar]
- T. Catalina, J. Virgone, F. Kuznik, Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling, Build. Environ., 44, 1740–1750 (2009) [Google Scholar]
- Q. Dong, S. Li, C. Han, Numerical and experimental study of the effect of solar radiation on thermal comfort in a radiant heating system, J. Build. Eng., 32, 101497 (2020) [Google Scholar]
- M. De Carli, M. Scarpa, R. Tomasi, A. Zarrella, DIGITHON: A numerical model for the thermal balance of rooms equipped with radiant systems, Build. Environ., 57, 126–144 (2012) [Google Scholar]
- G.P. Mitalas, Cooling load calculations by thermal response factors, ASHRAE Trans., 73, III.1.1-III.1.7 (1967) [Google Scholar]
- T. Kusuda, Thermal response factors for multi-layer structures of various heat conduction sys-tems, ASHRAE Trans., 75, 241–271 (1969) [Google Scholar]
- ARPAV, Agenzia Regionale per la Prevenzione e per la Protezione Ambientale del Veneto (2020). http://www.arpa.veneto.it [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.