Open Access
E3S Web Conf.
Volume 346, 2022
Article Number 02011
Number of page(s) 12
Section Thème 2. Gouvernance et financement / Theme 2. Governance and Funding
Published online 23 May 2022
  1. A. Singh, S.N. Panda, Optimization and simulation modelling for managing the problems of water resources, Water Resources Management, 27(9), 3421–3431 (2013) [CrossRef] [Google Scholar]
  2. A. J. Draper, J. R. Lund, Optimal hedging and carryover storage value, Water Resources Planning and Management, 130(1): 83–87 (2004) [CrossRef] [Google Scholar]
  3. M.Y. Tu, N.S. Hsu, F.T.C. Tsai, W.W.G. Yeh, Optimization of hedging rules for reservoir operations, Water Resources Planning and Management, 134(1): 3–13 (2008) [CrossRef] [Google Scholar]
  4. A. B. Dariane, F. Karami, Deriving hedging rules of multi-reservoir system by online evolving neural networks, Water Resources Management, 28(11), 3651–3665 (2014) [CrossRef] [Google Scholar]
  5. C. Huang, J. Zhao, Z. Wang, W. Shang, Optimal hedging rules for two-objective reservoir operation: balancing water supply and environmental flow, Water Resources Planning and Management, 142(12): 04016053 (2016) [CrossRef] [Google Scholar]
  6. M. Spiliotis, L. Mediero, L. Garrote, Optimization of hedging rules for reservoir operation during droughts based on particle swarm optimization, Water Resources Management, 30(15), 5759–5778 (2016) [CrossRef] [Google Scholar]
  7. K. Kranthi, K. Srinivasan, Generalized linear two-point hedging rule for water supply reservoir operation, Water Resources Planning and Management, 144(9), 04018051 (2018) [CrossRef] [Google Scholar]
  8. N. Shenava, M. Shourian, Optimal reservoir operation with water supply enhancement and flood mitigation objectives using an optimization-simulation approach, Water Resources Management, 32(13), 4393–4407 (2018) [CrossRef] [Google Scholar]
  9. X. S. Yang, A new metaheuristic bat-inspired algorithm, In: Gonzalez, J.R. et al. (eds.) Nature inspired cooperative strategies for optimization, Studies in Computational Intelligence, Vol. 284, pp 65–74, Springer, Berlin (2010) [Google Scholar]
  10. V.U. Reddy, A. Manoj, Optimal capacitor placement for loss reduction in distribution systems using bat algorithm. IOSR J. Eng. 02(10): 23–27 (2012) [CrossRef] [Google Scholar]
  11. T. Niknam, S. Sharifinia, R. Azizipanah-Abarghooee, A new enhanced bat-inspired algorithm for finding linear supply function equilibrium of GENCOs in the competitive electricity market, Energy Convers Manage. 76:1015–1028 (2013) [CrossRef] [Google Scholar]
  12. M. Ethteram, S.F. Mousavi, H. Karami, S. Farzin, R. Deo, F. Binti Othman, K. Chau, S. Sarkamaryan, V. P. Singh, A. El-Shafie, Bat algorithm for dam-reservoir operation, Environmental Earth Sciences, 77:510 (2018) [CrossRef] [Google Scholar]
  13. I. Ahmadianfar, A. Adib, M. Salarijazi, Optimizing multireservoir operation: hybrid of bat algorithm and differential evolution, Water Resources Planning and Management, 142(2), 05015010 (2016) [CrossRef] [Google Scholar]
  14. A. Zarei, S.F. Mousavi, Eshaghi Gordji, M. et al., Optimal reservoir operation using bat and particle swarm algorithm and game theory based on optimal water allocation among consumers, Water Resources Management, 33(9): 3071–3093 (2019) [CrossRef] [Google Scholar]
  15. A. Rittima, Hedging policy for reservoir system operation: A case study of Mun Bon and Lam Chae reservoirs, Kasetsart J. (Nat. Sci.) 43: 833–842 (2009) [Google Scholar]
  16. T. R. Neelakantan, N. Pundarikanthan, Hedging rule optimization for water supply reservoirs system, Water Resources Management, 13(6): 409–426 (1999) [CrossRef] [Google Scholar]
  17. O. Bozorg-Haddad, I. Karimirad, S. Seifollahi-Aghmiuni, H.A. Loáiciga, Development and application of the bat algorithm for optimizing the operation of reservoir systems, Water Resources Planning and Management 141(8), 04014097 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.