Open Access
E3S Web Conf.
Volume 347, 2022
2nd International Conference on Civil and Environmental Engineering (ICCEE 2022)
Article Number 01019
Number of page(s) 12
Section Infrastructure and Building Construction
Published online 14 April 2022
  1. K. Habib, Modelling activity generation processes. Ph.D. dissertation University of Toronto, Toronto. (2007) [Google Scholar]
  2. M. Meyer, E. Miller, Urban transportation planning: A decision-oriented approach. Boston: McGraw-Hill. (2001) [Google Scholar]
  3. A. Sindi, Improved activity-based model for mega-events. PhD thesis, University of Carleton, Ottawa, Canada. (2017) [Google Scholar]
  4. C. Xueming, Statistical and activity-based modeling of university student travel behavior, Transportation Planning and Technology, Taylor & Francis Journals, vol. 35, 5, 591-610, March. (2012) [CrossRef] [Google Scholar]
  5. S. Aviv, S. Christine, E. Shelley. Student Travel Behavior. Journal of Travel & Tourism Marketing. 17, 4, 1-10 (2004) doi:10.1300/J073v17n04_01. [Google Scholar]
  6. M. Garikapati, D. You, M. Pendyala, T. Patel, J. Kottommannil, A. Sussman, Design, Development, and Implementation of a University Travel Demand Modeling Framework, Transportation Research Record: Journal of the Transportation Research Board, 2563, 105–113 (2016) doi:10.3141/2563-15. [CrossRef] [Google Scholar]
  7. C. Benovolo, P. Dameri, B. D’Auria, Smart Mobility in Smart City, Action Taxonomy, ICT Intensity and Public Benefits. in T. Torre et al. (eds.), Empowering Organizations, Lecture Notes in Information Systems and Organisation 11 (2016) doi: 10.1007/978-3-319-23784-8_2. [Google Scholar]
  8. M. Duncan, A. Julian, Sharing Cities: A Case for Truly Smart and Sustainable Cities, MIT Press (2015) [Google Scholar]
  9. M. Jovanovskamimoza, and D. Nechoska, Smart Cities: Transport Challenges of the Macedonian Capital City. HOLISTICA, 8, 1, 45-58 (2017) [Google Scholar]
  10. P. Marta, B. Dag, Y. Pérez-Bustamante, Sustainable Smart Cities: Creating Spaces for Technological, Social and Business Development. Springer (2016) [Google Scholar]
  11. K. Nicos, What makes cities intelligent?, In Deakin, Mark. Smart Cities: Governing, Modelling and Analysing the Transition. Taylor and Francis, pp. 77 (2013) [Google Scholar]
  12. F. Areneodo, Simulation-based traffic forecast for the regional traffic supervision of Piemonte Region, ptv group, (2013) [Google Scholar]
  13. TrafficVision software. (2019) [Google Scholar]
  14. T. Abdulazim, H. Abdelgawad, K. Habib, B. Abdulhai, Using Smartphones and Sensor Technologies to Automate the Collection of Travel Data, in Annual Meeting of the Transportation Research Board. Washington, D.C. (2013) [Google Scholar]
  15. P. Jones, M. Bradley, Stated Preference Surveys: An Assessment, in Peter Stopher, Cheryl Stecher (ed.). Travel Survey Methods, pp.347 – 36. (2006) [Google Scholar]
  16. P. Jones, M. Dix, M. Clarke, and I. Heggie, Understanding travel behaviour. Aldershot, UK: Gower Publishing (1983) [Google Scholar]
  17. A. Sindi, Impact of Pedestrian Volumes on the Operational Performance of Modern Roundabouts, Master thesis, University of Waterloo, UWSpace (2011) [Google Scholar]
  18. R. Aldrete-Sanchez, J. Shelton, L. Cheu, Integrating the Transportation System with a University Campus Transportation Master Plan: A case Study, A Technical report submitted to Texas Dept. of Transportation. pp. 138 (2009) [Google Scholar]
  19. A. Allström, J. Barceló, J. Ekström, E. Grumert, D. Gundlegård, C. Rydergren, Traffic management for smart cities. Book Chapter Part of: Designing, developing, and facilitating smart cities: urban design to IoT solutions, pp. 211-240. (2016) doi: [Google Scholar]
  20. B. Abdulhai, R. Pringle, J. Karakoulas, Reinforcement learning for true adaptive traffic signal control, Journal of Transportation Engineering, 129, 3, 278–285 (2003) [CrossRef] [Google Scholar]
  21. Smithgroup JJR, The University of Toledo Multiple Campus Master Plan (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.