Open Access
E3S Web Conf.
Volume 347, 2022
2nd International Conference on Civil and Environmental Engineering (ICCEE 2022)
Article Number 02004
Number of page(s) 11
Section Construction Materials and Technologies
Published online 14 April 2022
  1. C. R. Gagg, Cement and concrete as an engineering material: An historic appraisal and case study analysis, Eng. Failure Anal., 40, 114-140 (2014) [CrossRef] [Google Scholar]
  2. T. D. Garrett, H. E. Cardenas, J. G. Lynam, Sugarcane bagasse and rice husk ash pozzolans: Cement strength and corrosion effects when using saltwater, Current Research in Green and Sustainable Chemistry, 1-2, 7–13 (2020) [Google Scholar]
  3. D. D. Chung, Carbon composites composites with carbon fibers, nanofibers, and nanotubes, Amsterdam; Boston; Heidelberg: Elsevier. (2017) [Google Scholar]
  4. F. Massazza, Pozzolanic cements, Cem. Concr. Compos., 15(4), 185-214 (1993) [CrossRef] [Google Scholar]
  5. J. M. C. Ongpeng, A. C. Oreta, S. Hirose, Investigation on the sensitivity of ultrasonic test applied to reinforced concrete beams using neural network, Applied Sciences Switzerland, 8(3) (2018) [Google Scholar]
  6. J. Ongpeng, M. Soberano, A. Oreta, & S. Hirose, Artificial neural network model using ultrasonic test results to predict compressive stress in concrete, Computers and Concrete, 19(1), 59-68 (2017) [Google Scholar]
  7. S. Mangi, M. H. W. Ibrahim, N. Jamaluddin, M. F. Arshad and S. Shahidan, Performances of concrete containing coal bottom ash with different fineness as a supplementary cementitious material exposed to seawater, Engineering Science and Technology,an International Journal (2019) [Google Scholar]
  8. S. Oner, R. Akyuz, An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem. Concr. Res., 35(6), 1165– 1171 (2005) [Google Scholar]
  9. Z. Hussain, N. M. Noor, M. A. Caronge, Workability and Compressive Strength of Seawater-Mixed Concrete Containing Rice Husk Ash as Supplementary Cementitious Material, International Journal of Integrated Engineering, 11(9), 192-200 (2019) [Google Scholar]
  10. H. Chao-Lung, B. Le Anh-Tuan, C. Chun-Tsun, Effect of rice husk ash on the strength and durability characteristics of concrete, Constr. Build. Mater., 25(9), 3768-3772 (2011) [CrossRef] [Google Scholar]
  11. N. Loganayagan, C. Mohan, S. Dhivyabharathi, Sugarcane bagasse ash as alternate supplementary cementitious material in concrete, Mater. Today: Proc. 45(2), 1004-1007 (2020). [Google Scholar]
  12. S. Zareei, A. Farshad, B. Nasrollah, Microstructure, strength, and durability of ecofriendly concretes containing sugarcane bagasse ash, Constr. Build. Mater, 184, 258–268 (2018) [CrossRef] [Google Scholar]
  13. P. Sarker, L. McKenzie, Strength and hydration heat of concrete using fly ash as a partial replacement of cement, in proceedings of the 24th Biennial Conference of the Concrete Institute Australia, Concrete Institute of Australia, (2009) [Google Scholar]
  14. S. Mangi et al., Performances of concrete containing coal bottom ash with different fineness as a supplementary cementitious material exposed to seawater, Engineering Science and Technology, an International Journal, 22(3), 929-938 (2019) [Google Scholar]
  15. A. Karaşin, M. Doğruyol, An Experimental Study on Strength and Durability for Utilization of Fly Ash in Concrete Mix, Adv. Mater. Sci. Eng., 1-6, (2014) [Google Scholar]
  16. B. Ambedkar, J. Alex, J. Dhanalakshmi, Enhancement of mechanical properties and durability of the cement concrete by RHA as cement replacement: Experiments and modeling, Constr. Build. Mater., 148, 167-175. (2017) [CrossRef] [Google Scholar]
  17. A. Muthadhi, S. Kothandaraman, Experimental Investigations of Performance Characteristics of Rice Husk Ash–Blended Concrete, J. Mater. Civ. Eng., 25(8), 1115-1118 (2013) [CrossRef] [Google Scholar]
  18. R. Bansal, V. Singh, R. Pareek. Effect on Compressive Strength with Partial Replacement of Fly Ash. Int. J. Emerging Technol., 6(1), 1-6 (2015) [Google Scholar]
  19. M. Singh, R. Siddique, Compressive strength, drying shrinkage and chemical resistance of concrete incorporating coal bottom ash as partial or total replacement of sand, Constr. Build. Mater., 68, 39-48 (2014) [CrossRef] [Google Scholar]
  20. R. Siddique, Compressive strength, water absorption, sorptivity, abrasion resistance and permeability of self-compacting concrete containing coal bottom ash, Constr. Build. Mater., 47, 1444-1450, (2013) [CrossRef] [Google Scholar]
  21. S. Er. Talsania, J. Pitroda, C. M. Vyas, Effect of rice husk ash on properties of pervious concrete, Int. J. Adv. Engg. Res. Studies, Jan-March, 296-299 (2015) [Google Scholar]
  22. N. Krishna, Kaarthik, S. Sandeep, K. M. Mini, Study on concrete with partial replacement of cement by rice husk ash, IOP Conference Series: Materials Science and Engineering, 149 (2016) [Google Scholar]
  23. M. Mazloom, A. A. Ramezanianpour, J. J. Brooks, Effect of silica fume on mechanical properties of high-strength concrete, Cem. Concr. Compos., 26(4), 347-357 (2004) [CrossRef] [Google Scholar]
  24. T. Nochaiya, W. Wongkeo, A. Chaipanich, Utilization of fly ash with silica fume and properties of Portland cement–fly ash–silica fume concrete, Fuel, 89(3), 768-774, (2010) [Google Scholar]
  25. N. K. Amudhavalli, J. Mathew, Effect of silica fume on strength and durability parameters of concrete, International Journal of Engineering Sciences & Emerging Technologies, 3(1), 28-35 (2012) [Google Scholar]
  26. G. A. Habeeb, Mahmud, Hilmi Bin, Study on properties of rice husk ash and its use as cement replacement material, Materials Research, 13(2), 185–190 (2010) [Google Scholar]
  27. M. Rafieizonooz, J. Mirza, M. R. Salim, M. W. Hussin, E. Khankhaje, Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement, Constr. Build. Mater., 116, 15–24 (2016) [CrossRef] [Google Scholar]
  28. S. A. Mangi, M. H. Wan Ibrahim, N. Jamaluddin, M. F. Arshad, P. J. Ramadhansyah, Effects of ground coal bottom ash on the properties of concrete, in Journal of Engineering Science and Technology, 14, 338-350 (2019) [Google Scholar]
  29. N.S. Bansal, Y. Antil, Effect of rice husk on compressive strength of concrete, in Int. J. Emerging Technology (2015) [Google Scholar]
  30. S. Gull, S. Wani, Amin, Ishfaq, Exploring optimum percentage of fly-ash as a replacement of cement for enhancement of concrete properties, 11, 16-25 (2020) [Google Scholar]
  31. I.O. Obilade, Use of rice husk ash as partial replacement for cement in concrete, in Int. J. Eng. Appl. Sci., 5(4), 11–16 (2014) [Google Scholar]
  32. V. Patil, M. Paliwal, Partial Replacement of Cement with Rice Husk Ash in Cement Concrete. International Journal of Engineering Research & Technology, 9(12), (2020) [Google Scholar]
  33. V. Saraswathy, & H. Song. Corrosion performance of rice husk ash blended concrete. Constr. Build. Mater., 21(8), 1779-1784. (2007) [CrossRef] [Google Scholar]
  34. A. B. Srinivasreddy, T. J. McCarthy and E. Lume, Effect of rice husk ash on workability and strength of concrete, 26th Biennial Concrete Institute of Australia’s National Conference, (2013) [Google Scholar]
  35. P. Jilowa, R.K. Pareek and V. Singh, An Experimental Study on Strength of Concrete by Partial Replacement of Cement with Fly-Ash and Rice Husk Ash with addition of Steel Fibers. Int. J. Emerging Technol., 6(2), 131-138 (2015) [Google Scholar]
  36. Akindahunsi, Akindehinde, O. Alade. Exploiting the Potentials of Rice Husk Ash as Supplement in Cement for Construction in Nigeria, Int. J. Concr. Struct. Mater., 4, 1-8 (2010) [Google Scholar]
  37. S. H. Sathawane, V. S. Vairagade, K. S., Kene, Combined effect of rice husk ash and fly ash on concrete by 30% cement replacement, Procedia Eng., 51, 35-44 (2013) [Google Scholar]
  38. G. A. Habeeb, M. M. Fayyadh, Rice husk ash concrete: the effect of RHA average particle size on mechanical properties and drying shrinkage, Aust. J. Basic Appl. Sci., 3(3), 1616-1622 (2009) [Google Scholar]
  39. S. Abhishek, G. Khurana, Strength evaluation of cement concrete using bottom ash as a partial replacement of fine aggregates, Int. J. Sci. Eng. Technol, 3(6), 189–194 (2015) [Google Scholar]
  40. R. Madandoust, M. M. Ranjbar, H. A. Moghadam, S. Y. Mousavi, Mechanical properties and durability assessment of rice husk ash concrete, Biosystems Engineering, 110(2), 144-152 (2011) [Google Scholar]
  41. T. Hussin, J. Parasuraman, Replacement of cement with commercially available rice husk ash in concrete, Infrastructure University Kuala Lumpur Research, 6(1) (2018) [Google Scholar]
  42. V. Ramasamy and S. Biswas, Performance of rice husk ash concrete with superplasticizers, in ICI J., 4, 27–34 (2008) [Google Scholar]
  43. D. Oyejobi, T. Oyewumi, S. Abdulkadir, A. Sholagberu, V. Motolani, Investigation of Rice Husk Ash Cementitious Constituent in Concrete. Journal of Agricultural Technology, 10(3), 533-542 (2014) [Google Scholar]
  44. A. Elahi, P. A. M. Basheer, S. V. Nanukuttan, Q. U. Z. Khan, Mechanical and durability properties of high performance concretes containing supplementary cementitious materials, Constr. Build. Mater., 24(3), 292–299 (2010) [CrossRef] [Google Scholar]
  45. L. Qingtao, L. Zhuguo, Y. Guanglin, Effects of elevated temperatures on properties of concrete containing ground granulated blast furnace slag as cementitious material, Constr. Build. Mater., 35, 687-692 (2012) [CrossRef] [Google Scholar]
  46. P. Chouhan, S. Jamle, M. P. Verma, Effect of Silica Fume on Strength Parameters of Concrete as a Partial Substitution of Cement, IJSART3, 5, 3-7 (2017) [Google Scholar]
  47. R. Khan, A. Ganesh, The effect of coal bottom ash (CBA) on mechanical and durability characteristics of concrete, Journal of Building Materials and Structures, 3(1), 31-42 (2016) [Google Scholar]
  48. S. Khoso, J. Khan, Khan, A. A. Ansari, K. Mirs, P. Sindh, Z. Hussain, Khaskheli, Experimental investigation on the properties of cement concrete partially replaced by silica fume and fly ash, Journal of Applied Engineering Science, 14(3), 345-350, (2016) [Google Scholar]
  49. S. N. Sadon, S. Beddu, S. Naganathan, N. L. M. Kamal, H. Hassan, Coal bottom ash as sustainable material in concrete–A review, Indian J. Sci. Technol., 10(36), 1-10 (2017) [Google Scholar]
  50. B. Rasoul, F. Gunzel, M. I. Rafiq, The effect of rice husk ash on the strength and durability of concrete at high replacement ratio, Mechanics, Materials Science & Engineering, 12 (1), (2017) [Google Scholar]
  51. C. Argiz, A. Moragues, E. Menéndez, Use of ground coal bottom ash as cement constituent in concretes exposed to chloride environments, J. Cleaner Prod., 170, 25-33 (2017) [Google Scholar]
  52. M. Amin, K. Abu el-hassan, Effect of using different types of nano materials on mechanical properties of high strength concrete, in Constr. Build. Mater., 80, 116–124 (2015) [CrossRef] [Google Scholar]
  53. P. Rattanachu, P. Toolkasikorn, W. Tangchirapat, P. Chindaprasirt, C. Jaturapitakkul, Performance of recycled aggregate concrete with rice husk ash as cement binder, Cem. Concr. Compos., 108, 103533 (2020) [CrossRef] [Google Scholar]
  54. V. Reddy, D. Rao, Effect of w/c ratio on workability and mechanical properties of high strength Self Compacting Concrete (M70 grade). IOSR Journal of Mechanical and Civil Engineering, 11(5), (2014) [Google Scholar]
  55. A. A. Ramezanianpour, F. Moodi, Gh. Ahmadibeni, M. Mahdikhani, P. Pourbeik, Evaluation of Mechanical Properties and Durability of Concretes Containing Rice Husk Ash, 3rd International Conference on Concrete & Development, 791-800 (2009) [Google Scholar]
  56. D.D. Bui, J. Hu, P. Stroeven, Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete, Cem. Concr. Compos., 27(3), 357–366. (2005) [CrossRef] [Google Scholar]
  57. A. Siddika, M. A. A. Mamun, M. H. Ali, Study on concrete with rice husk ash. Innovative Infrastructure Solutions, 3(1). (2018) [CrossRef] [Google Scholar]
  58. C. Jaturapitakkul, R. Cheerarot, Development of Bottom Ash as Pozzolanic Material. J. Mater. Civ. Eng., 15(1), 48–53. (2003) [CrossRef] [Google Scholar]
  59. A. W. C. Oreta, J. M. C. Ongpeng, Modeling the confined compressive strength of hybrid circular concrete columns using neural networks. Computers and Concrete, 8(5), 597-616. (2011) [CrossRef] [Google Scholar]
  60. M. Gevrey, I. Dimopoulos, S. Lek, Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Modell., 160(3), 249-264. (2003) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.