Open Access
E3S Web Conf.
Volume 349, 2022
10th International Conference on Life Cycle Management (LCM 2021)
Article Number 02004
Number of page(s) 8
Section Urban Living, Energy and Mobility
Published online 20 May 2022
  1. M. Sterner, Power-to-Gas, in Handbook of Climate Change Mitigation and Adaptation, W.-Y. Chen, T. Suzuki, and M. Lackner, Editors. 2016, Springer New York: New York, NY. p. 1-51. [Google Scholar]
  2. J.C. Koj, C. Wulf, and P. Zapp, Environmental impacts of power-to-X systems A review of technological and methodological choices in Life Cycle Assessments. Renewable and Sustainable Energy Reviews, 2019. 112: p. 865-879. [CrossRef] [Google Scholar]
  3. S.I. Olsen, M. Borup, and P.D. Andersen, Future-Oriented LCA, in Life Cycle Assessment: Theory and Practice, M.Z. Hauschild, R.K. Rosenbaum, and S.I. Olsen, Editors. 2018, Springer International Publishing: Cham. p. 499-518. [Google Scholar]
  4. T.P. Wright, Factors Affecting the Cost of Airplanes. Journal of the Aeronautical Sciences, 1936. 3(4): p. 122-128. [CrossRef] [Google Scholar]
  5. G. Thomassen, S. Van Passel, and J. Dewulf, A review on learning effects in prospective technology assessment. Renewable and Sustainable Energy Reviews, 2020. 130: p. 109937. [CrossRef] [Google Scholar]
  6. H. Böhm, et al., D7.5 Report on experience curves and economies of scale, in Innovative large-scale energy storage technologies and Power-to-Gas concepts after optimisation. 2018. [Google Scholar]
  7. C.H. Glock, et al., Applications of learning curves in production and operations management: A systematic literature review. Computers & Industrial Engineering, 2019. 131: p. 422-441. [CrossRef] [Google Scholar]
  8. A. Louwen and J.S. Lacerda, Chapter 2 The experience curve: concept, history, methods, and issues, in Technological Learning in the Transition to a Low-Carbon Energy System, M. Junginger and A. Louwen, Editors. 2020, Academic Press. p. 9-31. [CrossRef] [Google Scholar]
  9. J.D. Bergesen and S. Suh, A framework for technological learning in the supply chain: A case study on CdTe photovoltaics. Applied Energy, 2016. 169: p. 721728. [CrossRef] [Google Scholar]
  10. M. Caduff, et al., Wind Power Electricity: The Bigger the Turbine, The Greener the Electricity? Environmental Science & Technology, 2012. 46(9): p. 4725-4733. [CrossRef] [PubMed] [Google Scholar]
  11. K. Arnold, Treibhausgas-Optimierung des Einsatzes von Technologien zur Erzeugung und Nutzung von Biomethan auf Basis nachwachsender Rohstoffe als Baustein eines zukunftsfähigen Energiesystems, in Fakultät für Ingenieurwissenschaften, Abteilung Maschinenbau und Verfahrenstechnik. 2015, Universität Duisburg-Essen: Essen. [Google Scholar]
  12. S. Simon, K. Arnold, and T. Targiel, Synoptische Auswertung von Szenarien und Lernkurven Endbericht AP 3. BioEnergieDat Bereitstellung einer aktuellen und harmonisierten Datenbasis als Beitrag zur Weiterentwicklung einer nachhaltigen Bioenergiestrategie. 2013: Stuttgart; Wuppertal. [Google Scholar]
  13. H. Böhm, et al., Projecting cost development for future large-scale power-to-gas implementations by scaling effects. Applied Energy, 2020. 264: p. 114780. [CrossRef] [Google Scholar]
  14. C. Wulf, P. Zapp, and A. Schreiber, Review of Power-to-X Demonstration Projects in Europe. Frontiers in Energy Research, 2020. 8(191). [CrossRef] [PubMed] [Google Scholar]
  15. IRENA, Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5°C Climate Goal. 2020: Abu Dhabi. [Google Scholar]
  16. T. Gül, et al., An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM). Energy, 2009. 34(10): p. 1423-1437. [CrossRef] [Google Scholar]
  17. K. Schoots, et al., Learning curves for hydrogen production technology: An assessment of observed cost reductions. International Journal of Hydrogen Energy, 2008. 33(11): p. 2630-2645. [CrossRef] [Google Scholar]
  18. M. Thema, et al., Necessity and Impact of Power-to-gas on Energy Transition in Germany. Energy Procedia, 2016. 99: p. 392-400. [CrossRef] [Google Scholar]
  19. A. Liebich, et al., Detailed analyses of the system comparison of storable energy carriers from renewable energies Final report, G.E. Agency, Editor. 2021: Dessau-Roßlau. [Google Scholar]
  20. A. Liebich, et al., Detailed analyses of the system comparison of storable energy carriers from renewable energies Annex, G.E. Agency, Editor. 2021: DessauRoßlau. [Google Scholar]
  21. W. Kuckshinrichs, T. Ketelaer, and J.C. Koj, Economic Analysis of Improved Alkaline Water Electrolysis. Frontiers in Energy Research, 2017. 5(1). [CrossRef] [Google Scholar]
  22. S. Morgenthaler, et al., Site-dependent levelized cost assessment for fully renewable Power-to-Methane systems. Energy Conversion and Management, 2020. 223: p. 113150. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.