Open Access
E3S Web Conf.
Volume 349, 2022
10th International Conference on Life Cycle Management (LCM 2021)
Article Number 13005
Number of page(s) 7
Section Life Cycle Management and the Sustainable Development Goals
Published online 20 May 2022
  1. Nations, U. & Griggs, D. Sustainable development goals for people and planet. 5–7 (2015). [Google Scholar]
  2. de Smedt, P. The use of impact assessment tools to support sustainable policy objectives in Europe. Ecol. Soc. 15, (2010). [CrossRef] [Google Scholar]
  3. Jain, P. & Jain, P. Are the Sustainable Development Goals really sustainable? A policy perspective. Sustain. Dev. 28, 1642–1651 (2020). [CrossRef] [Google Scholar]
  4. Guinée, J. B. et al. Life cycle assessment: Past, present, and future. Environ. Sci. Technol. 45, 90–96 (2011). [CrossRef] [PubMed] [Google Scholar]
  5. Thornton, J. Implementing green chemistry. An environmental policy for sustainability. Pure Appl. Chem. 73, 1231–1236 (2001). [CrossRef] [Google Scholar]
  6. Meho, L. I. & Yang, K. Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus scopus and google scholar. J. Am. Soc. Inf. Sci. Technol. 58, 2105–2125 (2007). [CrossRef] [Google Scholar]
  7. Lankey, R. L. & Anastas, P. T. Life-cycle approaches for assessing green chemistry technologies. Ind. Eng. Chem. Res. 41, 4498–4502 (2002). [CrossRef] [Google Scholar]
  8. Slater, C. S. et al. Expanding the frontiers for chemical engineers in green engineering education. Int. J. Eng. Educ. 23, 309–324 (2007). [Google Scholar]
  9. Domènech, X., Ayllón, J. A., Peral, J. & Rieradevall, J. How green is a chemical reaction? Application of LCA to green chemistry. Environ. Sci. Technol. 36, 5517–5520 (2002). [CrossRef] [PubMed] [Google Scholar]
  10. Koller, M., Maršálek, L., de Sousa Dias, M. M. & Braunegg, G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N. Biotechnol. 37, 24–38 (2017). [CrossRef] [Google Scholar]
  11. Som, C. et al. The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269, 160–169 (2010). [CrossRef] [PubMed] [Google Scholar]
  12. Sheldon, R. A. Utilisation of biomass for sustainable fuels and chemicals: Molecules, methods and metrics. Catal. Today 167, 3–13 (2011). [CrossRef] [Google Scholar]
  13. Chemat, F., Vian, M. A. & Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 13, 8615–8627 (2012). [CrossRef] [Google Scholar]
  14. Artz, J. et al. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 118, 434–504 (2018). [CrossRef] [PubMed] [Google Scholar]
  15. Tabone, M. D., Cregg, J. J., Beckman, E. J. & Landis, A. E. Sustainability metrics: Life cycle assessment and green design in polymers. Environ. Sci. Technol. 44, 8264–8269 (2010). [CrossRef] [PubMed] [Google Scholar]
  16. Anastas, P. T. & Lankey, R. L. Life cycle assessment and green chemistry: The yin and yang of industrial ecology. Green Chem. 2, 289–295 (2000). [CrossRef] [Google Scholar]
  17. Schäffner, B. et al. Synthesis and application of carbonated fatty acid esters from carbon dioxide including a life cycle analysis. ChemSusChem 7, 1133–1139 (2014). [CrossRef] [PubMed] [Google Scholar]
  18. Emery, I., Kempisty, D., Fain, B. & Mbonimpa, E. Evaluation of treatment options for well water contaminated with perfluorinated alkyl substances using life cycle assessment. Int. J. Life Cycle Assess. 24, 117–128 (2019). [CrossRef] [Google Scholar]
  19. Gao, R. X. & Wang, P. Sensors to Control Processing and Improve Lifetime and Performance for Sustainable Manufacturing. Encyclopedia of Sustainable Technologies (2017). [Google Scholar]
  20. Henderson, R. K., Jiménez-González, C., Preston, C., Constable, D. J. C. & Woodley, J. M. EHS & LCA assessment for 7-ACA synthesis A case study for comparing biocatalytic & chemical synthesis. Ind. Biotechnol. 4, 180–192 (2008). [CrossRef] [Google Scholar]
  21. Mulholland, K. L., Sylvester, R. W. & Dyer, J. A. Sustainability: Waste minimization, green chemistry and inherently safer processing. Environ. Prog. 19, 260–268 (2000). [CrossRef] [Google Scholar]
  22. Sheldon, R. A. The: E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 19, 18–43 (2017). [CrossRef] [Google Scholar]
  23. Sheldon, R. A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustain. Chem. Eng. 6, 32–48 (2018). [CrossRef] [Google Scholar]
  24. Wilson, M. P. & Schwarzman, M. R. Toward a new U.S. chemicals policy: Rebuilding the foundation to advance new science, green chemistry, and environmental health. Environ. Health Perspect. 117, 1202–1209 (2009). [CrossRef] [PubMed] [Google Scholar]
  25. Kirchhoff, M. M. Promoting sustainability through green chemistry. Resour. Conserv. Recycl. 44, 237–243 (2005). [CrossRef] [Google Scholar]
  26. Lozano, R., Carpenter, A. & Lozano, F. J. Critical reflections on the Chemical Leasing concept. Resour. Conserv. Recycl. 86, 53–60 (2014). [CrossRef] [Google Scholar]
  27. Manahan, S. Environmental chemistry, Tenth edition. Environmental Chemistry, Tenth Edition (2017). [Google Scholar]
  28. Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51, 1412–1421 (2010). [CrossRef] [Google Scholar]
  29. Clark, J. H., Luque, R. & Matharu, A. S. Green chemistry, biofuels, and biorefinery. Annu. Rev. Chem. Biomol. Eng. 3, 183–207 (2012). [CrossRef] [PubMed] [Google Scholar]
  30. Yayayürük, A. E. & Yayayürük, O. Applications of green chemistry approaches in environmental analysis. Curr. Anal. Chem. 15, 745–758 (2019). [CrossRef] [Google Scholar]
  31. Farrusseng, D., Aguado, S. & Pinel, C. Metal-organic frameworks: Opportunities for catalysis. Angew. Chemie Int. Ed. 48, 7502–7513 (2009). [CrossRef] [Google Scholar]
  32. Sheldon, R. A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev. 41, 1437–1451 (2012). [CrossRef] [PubMed] [Google Scholar]
  33. Sheldon, R. A., Arends, I. W. C. E. & Hanefeld, U. Green Chemistry and Catalysis. Green Chemistry and Catalysis (2007). [CrossRef] [Google Scholar]
  34. Zuin, V. G. & Ramin, L. Z. Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches. Top. Curr. Chem. 376, (2018). [Google Scholar]
  35. Brett, C. M. A. Novel sensor devices and monitoring strategies for green and sustainable chemistry processes. Pure Appl. Chem. 79, 1969–1980 (2007). [CrossRef] [Google Scholar]
  36. Hendershot, D. C. An overview of inherently safer design. Process Saf. Prog. 25, 98–107 (2006). [CrossRef] [Google Scholar]
  37. Camana, D., Manzardo, A., Fedele, A. & Toniolo, S. Chapter 9 Life cycle sustainability dashboard and communication strategies of scientific data for sustainable development. in Methods in Sustainability Science (ed. Ren, J.) 135–152 (Elsevier, 2021). [CrossRef] [Google Scholar]
  38. Vivanco, D. F., Sala, S. & McDowall, W. Roadmap to rebound: How to address rebound effects from resource efficiency policy. Sustain. 10, (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.