Open Access
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01002
Number of page(s) 6
Published online 24 May 2022
  1. Chaudhary, S.K., Srivastava, P.K.: Future challenges in agricultural water management. In: Agricultural Water Management. pp. 445–456. Elsevier (2021). [CrossRef] [Google Scholar]
  2. Yang, D., Yang, Y., Xia, J.: Hydrological cycle and water resources in a changing world: A review. Geography and Sustainability. 2, 115–122 (2021). [CrossRef] [Google Scholar]
  3. Karamian, F., Mirakzadeh, A.A., Azari, A.: The water-energy-food nexus in farming: Managerial insights for a more efficient consumption of agricultural inputs. Sustainable Production and Consumption. 27, 1357–1371 (2021). [CrossRef] [Google Scholar]
  4. Li, B., Shukla, M.K., Du, T.: Combined environmental stresses induced by drip irrigation positively affect most solar greenhouse grown tomato fruit quality. Scientia Horticulturae. 288, 110334 (2021). [CrossRef] [Google Scholar]
  5. Mhamdi, H., Ahticha, M., Kerrou, O., Frimane, A., Bakraoui, M., Aggour, M.: Methodological approach for the implementation of a remote management system for large-scale irrigation. Materials Today: Proceedings. S2214785321044473 (2021). [Google Scholar]
  6. Boini, A., Bresilla, K., Perulli, G.D., Manfrini, L., Corelli Grappadelli, L., Morandi, B.: Photoselective nets impact apple sap flow and fruit growth. Agricultural Water Management. 226, 105738 (2019). [CrossRef] [Google Scholar]
  7. Verma, S., Pahuja, R.: Recalibration and performance comparison of soil moisture sensors using regression and neural network characteristic models. Materials Today: Proceedings. 45, 4852–4861 (2021). [CrossRef] [Google Scholar]
  8. Shi, J., Wu, X., Zhang, M., Wang, X., Zuo, Q., Wu, X., Zhang, H., Ben-Gal, A.: Numerically scheduling plant water deficit index-based smart irrigation to optimize crop yield and water use efficiency. Agricultural Water Management. 248, 106774 (2021). [CrossRef] [Google Scholar]
  9. Singh, A.: Assessment of different strategies for managing the water resources problems of irrigated agriculture. Agricultural Water Management. 208, 187–192 (2018). [CrossRef] [Google Scholar]
  10. Paige, G.B., Keefer, T.O.: Comparison of Field Performance of Multiple Soil Moisture Sensors in a Semi-Arid Rangeland. JAWRA Journal of the American Water Resources Association. 44, 121–135 (2008). [CrossRef] [Google Scholar]
  11. Walczak, A., Lipinski, M., Janik, G.: Application of the TDR Sensor and the Parameters of Injection Irrigation for the Estimation of Soil Evaporation Intensity. Sensors. 21, 2309 (2021). [CrossRef] [PubMed] [Google Scholar]
  12. Khadim, F.K., Dokou, Z., Bagtzoglou, A.C., Yang, M., Lijalem, G.A., Anagnostou, E.: A numerical framework to advance agricultural water management under hydrological stress conditions in a data scarce environment. Agricultural Water Management. 254, 106947 (2021). [CrossRef] [Google Scholar]
  13. B. Et-taibi, M. R. Abid, I. Boumhidi and D. Benhaddou, “Smart Agriculture as a Cyber Physical System: A Real-World Deployment,” 2020 Fourth International Conference on Intelligent Computing in Data Sciences (ICDS), 2020, pp. 1–7, DOI: 10.1109/ICDS50568.2020.9268734 [Google Scholar]
  14. E.-T. Bouali, M. R. Abid, E.-M. Boufounas, T. A. Hamed and D. Benhaddou, “Renewable Energy Integration into Cloud & IoT-based Smart Agriculture,” in IEEE Access, DOI: 10.1109/ACCESS.2021.3138160. [Google Scholar]
  15. R. Gonzalez Perea, A. Mérida Garcia, I. Fernandez Garcia, E. Camacho Poyato, P. Montesinos, and J. A. Rodriguez Diaz, “Middleware to Operate Smart Photovoltaic Irrigation Systems in Real Time,” Water, vol. 11, no. 7, Art. no. 7, Jul. 2019, DOI: 10.3390/w11071508. [CrossRef] [Google Scholar]
  16. A. Nasiakou, M. Vavalis, and D. Zimeris, “Smart energy for smart irrigation,” Computers and Electronics in Agriculture, vol. 129, pp. 74–83, Nov. 2016, DOI: 10.1016/j.compag.2016.09.008. [CrossRef] [Google Scholar]
  17. M. Yuli, R. Puig, M. A. Fuentes, D. Civancik-Uslu, and M. Capilla, “Eco-innovation in garden irrigation tools and carbon footprint assessment,” Int. J. Environ. Sci. Technol., vol. 16, no. 7, pp. 2937–2950, Jul. 2019, DOI: 10.1007/s13762-018-1937-y. [CrossRef] [Google Scholar]
  18. H. Jaafar and S. A. Kharroubi, “Views, practices and knowledge of farmers regarding smart irrigation apps: A national cross-sectional study in Lebanon,” Agricultural Water Management, vol. 248, p. 106759, Apr. 2021, DOI: 10.1016/j.agwat.2021.106759. [CrossRef] [Google Scholar]
  19. H. Gimpel, V. Graf-Drasch, F. Hawlitschek, and K. Neumeier, “Designing smart and sustainable irrigation: A case study,” Journal of Cleaner Production, p. 128048, Jun. 2021, DOI: 10.1016/j.jclepro.2021.128048. [CrossRef] [Google Scholar]
  20. R. Liao, S. Zhang, X. Zhang, M. Wang, H. Wu, and L. Zhangzhong, “Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept,” Agricultural Water Management, vol. 245, p. 106632, Feb. 2021, DOI: 10.1016/j.agwat.2020.106632. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.