Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01021
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202235101021
Published online 24 May 2022
  1. R. Gopinath, M. Kumar, C. P. C. Joshua, K. Srinivas, Energy management using non-intrusive load monitoring techniques-State-of-the-art and future research directions. Sustainable Cities and Society 62, 102411 (2020). [CrossRef] [Google Scholar]
  2. Y. Liu, W. Liu, Y. Shen, X. Zhao, S. Gao, Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations. Applied Energy 287, 116616 (2021). [CrossRef] [Google Scholar]
  3. S. Hosseini, K. Agbossou, S. Kelouwani, A. Cardenas, Non-intrusive load monitoring through home energy management systems: A comprehensive review. Renewable and Sustainable Energy Reviews 79, 1266–1274 (2017). [CrossRef] [Google Scholar]
  4. A. Zoha, A. Gluhak, M. Imran, S. Rajasegarar, Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors 12 (12), 16838–16866 (2012). [CrossRef] [PubMed] [Google Scholar]
  5. X. Yuan, P. Han, Y. Duan, R. E. Alden, V. Rallabandi, D. M. Ionel, Residential Electrical Load Monitoring and Modeling-State of the Art and Future Trends for Smart Homes and Grids. Electric Power Components and Systems 48 (11), 1125–1143 (2020). [CrossRef] [Google Scholar]
  6. S. Makonin, F. Popowich, Nonintrusive load monitoring (NILM) performance evaluation. Energy Efficiency 8 (4), 809–814 (2015). [CrossRef] [Google Scholar]
  7. G. W. Hart, Nonintrusive appliance load monitoring. Proceedings of the IEEE 80 (12), 1870–1891 (1992). [CrossRef] [Google Scholar]
  8. O. Parson, S. Ghosh, M. Weal, A. Rogers, Nonintrusive load monitoring using prior models of general appliance types. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 26, pp. 356–362. (2012). [Google Scholar]
  9. J. Z. Kolter, T. Jaakkola, Approximate inference in additive factorial hmms with application to energy disaggregation. In: Artificial intelligence and statistics, vol. 22, pp. 1472–1482. PMLR (2012) [Google Scholar]
  10. S. Rahimi, A. D. Chan, R. A. Goubran, Nonintrusive load monitoring of electrical devices in health smart homes. In: 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, pp. 2313–2316. IEEE (2012). [CrossRef] [Google Scholar]
  11. M. Figueiredo, A. De Almeida, B. Ribeiro, Home electrical signal disaggregation for non-intrusive load monitoring (NILM) systems. Neurocomputing 96, 66–73 (2012). [CrossRef] [Google Scholar]
  12. T.T. Thiruvaran, Phung, E. Ambikairajah, Automatic identification of electric loads using switching transient current signals. In: IEEE 2013 Tencon-Spring, pp. 252–256. IEEE (2013). [CrossRef] [Google Scholar]
  13. A. Zoha A. Gluhak, M. A. Imran, Low-power appliance monitoring using factorial hidden markov models. In: 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 527–532. IEEE (2013). [Google Scholar]
  14. V. Stankovic, J. Liao, L. Stankovic, A graph-based signal processing approach for low-rate energy disaggregation. In: 2014 IEEE symposium on computational intelligence for engineering solutions (CIES), pp. 81–87. IEEE (2014). [CrossRef] [Google Scholar]
  15. J. Kelly, W. Knottenbelt, Neural nilm: Deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM international conference on embedded systems for energyefficient built environments, pp. 55–64. (2015). [CrossRef] [Google Scholar]
  16. R. Bonfigli, E. Principi, M. Severini, M. Squartini, F. Piazza, Non-intrusive load monitoring by using active and reactive power in additive Factorial Hidden Markov Models. Applied Energy 208, 1590–1607 (2017). [CrossRef] [Google Scholar]
  17. R. Bonfigli, A. Felicetti, E. Principi, M. Fagiani, S. Squartini, F. Piazza, Denoising autoencoders for non-intrusive load monitoring: improvements and comparative evaluation. Energy and Buildings 158, 1461–1474 (2018). [CrossRef] [Google Scholar]
  18. Z. Lan, B. Yin, T. Wang, G. Zuo, A non-intrusive load identification method based on convolution neural network. In: 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1–5, IEEE (2017). [Google Scholar]
  19. D. Paiva Penha, A. R. G. Castro, Convolutional neural network applied to the identification of residential equipment in non-intrusive load monitoring systems. In: 3rd International Conference on Artificial Intelligence and Applications, pp. 11–21. (2017). [CrossRef] [Google Scholar]
  20. M. Valenti, R. Bonfigli, E. Principi, S. Squartini, Exploiting the reactive power in deep neural models for non-intrusive load monitoring. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018). [Google Scholar]
  21. L. De Baets, J. Ruyssinck, C. Develder, T. Dhaene, D. Deschrijver, Appliance classification using VI trajectories and convolutional neural networks. Energy and Buildings 158, 32–36 (2018). [CrossRef] [Google Scholar]
  22. K. Chen, Q. Wang, Z. He, K. Chen, J. Hu, J. He, Convolutional sequence to sequence non-intrusive load monitoring. The Journal of Engineering 17, 1860–1864 (2018). [CrossRef] [Google Scholar]
  23. A. Kundu, G. P. Juvekar, K. Davis, Deep Neural Network Based Non-Intrusive Load Status Recognition. In: 2018 Clemson University Power Systems Conference (PSC), pp. 1–6. IEEE (2018). [Google Scholar]
  24. A. L. Wang, B. X. Chen, C. G. Wang, D. Hua, Non-intrusive load monitoring algorithm based on features of V-I trajectory. Electric Power Systems Research 157, 134–144 (2018). [CrossRef] [Google Scholar]
  25. X. Shi, H. Ming, S. Shakkottai, L. Xie, J. Yao, Nonintrusive load monitoring in residential households with low-resolution data. Applied Energy 252, 113283 (2019). [CrossRef] [Google Scholar]
  26. A. Alkhulaifi, A. J. Aljohani, Investigation of deep learning-based techniques for load disaggregation, low-frequency approach. Int. J. Adv. Comput. Sci. Appl 11 (1), 701–706 (2020). [Google Scholar]
  27. M. Xia, K. Wang, W. Song, C. Chen, Y. Li, Nonintrusive load disaggregation based on composite deep long short-term memory network. Expert Systems with Applications 160, 113669 (2020). [CrossRef] [Google Scholar]
  28. X. Huang, B. Yin, Z. Wei, X. Wei, R. Zhang, An online non-intrusive load monitoring method based on Hidden Markov model. Journal of Physics: Conference Series 1176(4), 042036 (2019). [CrossRef] [Google Scholar]
  29. D. Xia, S. Ba, A. Ahmadpour, Non-intrusive load disaggregation of smart home appliances using the IPPO algorithm and FHM model. Sustainable Cities and Society 67, 102731 (2021). [CrossRef] [Google Scholar]
  30. S. Makonin, F. Popowich, I. V. Bajić, B. Gill, L. Bartram, Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring. IEEE Transactions on smart grid 7 (6), 2575–2585 (2015). [Google Scholar]
  31. Z. Wu, C. Wang, W. Peng, W. Liu, H. Zhang, Non intrusive load monitoring using factorial hidden markov model based on adaptive density peak clustering. Energy and Buildings 244, 111025 (2021). [CrossRef] [Google Scholar]
  32. H. Salem, M. Sayed-Mouchaweh, M. Tagina, Unsupervised Bayesian Non Parametric approach for Non-Intrusive Load Monitoring based on time of usage. Neurocomputing 435, 239–252 (2021). [CrossRef] [Google Scholar]
  33. G. A. Raiker, S. B. Reddy, L. Umanand, A. Yadav, M. M. Shaikh, Approach to non-intrusive load monitoring using factorial hidden markov model. In: 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), pp. 381–386. IEEE (2018). [Google Scholar]
  34. J. Holweger, M. Dorokhova, L. Bloch, C. Ballif, N. Wyrsch, Unsupervised algorithm for disaggregating low-sampling-rate electricity consumption of households. Sustainable Energy, Grids and Networks 19, 100244 (2019). [CrossRef] [Google Scholar]
  35. C. Yang, Z. Wu, Research on Non-intrusive Load Decomposition Based on FHMM. In: IOP Conference Series: Materials Science and Engineering, vol. 768, pp. 062046. IOP Publishing (2020). [CrossRef] [Google Scholar]
  36. R. V. A. Monteiro, J. C. R. de Santana, R. F. S. Teixeira, A. S. Bretas, R. Aguiar, C. E. P. Poma, Non-intrusive load monitoring using artificial intelligence classifiers: Performance analysis of machine learning techniques. Electric Power Systems Research 198, 107347 (2021). [CrossRef] [Google Scholar]
  37. Z. Jia, L. Yang, Z. Zhang, H. Liu, F. Kong, Sequence to point learning based on bidirectional dilated residual network for non-intrusive load monitoring. International Journal of Electrical Power & Energy Systems 129, 106837 (2021). [CrossRef] [Google Scholar]
  38. Y. Himeur, A. Alsalemi, F. Bensaali, A. Amira, Smart non-intrusive appliance identification using a novel local power histogramming descriptor with an improved k-nearest neighbors classifier. Sustainable Cities and Society 67, 102764 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.