Open Access
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01026
Number of page(s) 5
Published online 24 May 2022
  1. Said Abenna, Mohammed Nahid, and Abdelmounaim Kochairi Belbachir. Brain-computer interface: Rhythm alpha analysis for eyes signals. In The Fourth International Conference On Intelligent Computing in Data Sciences, IEEE, (2020) [Google Scholar]
  2. Said Abenna, Mohammed Nahid, and Abderrahim Bajit. BCI: Classifiers Optimization for EEG Signals Acquiring in RealTime. In 2020 6th IEEE Congress on Information Science and Technology (CiSt), (2021). [Google Scholar]
  3. Said Abenna, Mohammed Nahid, and Abderrahim Bajit. Brain-computer interface: A novel EEG classification for baseline eye states using LGBM algorithm, chapter 18, pages 189–198. Springer Science and Business Media LLC, (2021). [Google Scholar]
  4. L. F. Nicolas Alonso and J. Gomez Gil. Brain-computer interfaces, a review sensors. 2012. [Google Scholar]
  5. C.J. Bell, P. Shenoy, R. Chalodhorn, and R.P. Rao. Control of a humanoid robot by a noninvasive brain-computer interface in humans. J. Neural Eng., (2008). [Google Scholar]
  6. B. Blankertz, G. Dornhege, M. Krauledat, K. R. Müller, and G. Curio. The non-invasive berlin braincomputer interface: fast acquisition of effective performance in untrained subjects. NeuroImage, (2007). [Google Scholar]
  7. B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Müller. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag, (2008). [Google Scholar]
  8. A.A. Hossain, M.W. Rahman, M.A. Riheen. Left and right hand movements eeg signals classification using wavelet transform and probabilistic neural network. International Journal of Electrical and Computer Engineering, (2015). [Google Scholar]
  9. Chih Hsu Huang, Ming Shaung Ju, and Chou Ching K. Lin. A robust algorithm for removing artifacts in EEG recorded during fMRI/EEG study. Computers in Biology and Medicine, (2012). [PubMed] [Google Scholar]
  10. J. Lerga, N. Saulig, L. Stankovi. Rule-Based EEG Classifier Utilizing Local Entropy of TimeFrequency Distributions, (2021). [Google Scholar]
  11. W. Long, J.J. Jiao, X.M. Liang, and M.Z. Tang. An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng. Appl. Artif. Intell., (2018). [Google Scholar]
  12. D.J. McFarland, D.J. Krusienski, W.A. Sarnacki, and J.R. Wolpaw. Emulation of computer mouse control with a noninvasive brain-computer interface. J. Neural Eng., (2008). [Google Scholar]
  13. S. Mirjalili, S.M. Mirjalili, and A. Lewis. Grey wolf optimizer. Adv. Eng. Software, (2014) [Google Scholar]
  14. S. R. Sreeja and Debasis Samanta. Classification of multiclass motor imagery EEG signal using sparsity approach. Neurocomputing, 368:133–145, (2019). [CrossRef] [Google Scholar]
  15. Yousef Rezaei Tabar and Ugur Halici. A novel deep learning approach for classification of EEG motor imagery signals. Journal of Neural Engineering, page 16003, (2017). [Google Scholar]
  16. S. Z. Zahid, M. Aqil, M. Tufail, and M. S. Nazir. Online Classification of Multiple Motor Imagery Tasks Using Filter Bank Based Maximum-a-Posteriori Common Spatial Pattern Filters. IRBM, 1, (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.