Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01028
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202235101028
Published online 24 May 2022
  1. A. R. Feinstein, “The pre-therapeutic classification of co-morbidity in chronic disease,” J. Chronic Dis., vol. 23, no. 7, pp. 455–468 [Google Scholar]
  2. M. Rijken et al., How to improve care for people with multimorbidity in Europe? European Observatory on Health Systems and Policies, [2017]. Available on: http://www.ncbi.nlm.nih.gov/books/NBK464548. Last accessed 12 aout 2021 [Google Scholar]
  3. R. Pastorino et al., “Benefits and challenges of Big Data in healthcare: an overview of the European initiatives”, Eur. J. Public Health, vol. 29, no Supplement_3, p. 23–27 [Google Scholar]
  4. G. A. Orenstein et L. Lewis, “Eriksons Stages of Psychosocial Development”, in StatPearls, Treasure Island (FL): StatPearls Publishing, [2021]. [Google Scholar]
  5. R. Bonita, R. Beaglehole, T. Kjellström, et W. H. Organization, Basic epidemiology. World Health Organization, [2006]. [Google Scholar]
  6. H. A. Droogleever Fortuyn et al., “Severe fatigue in narcolepsy with cataplexy”, J. Sleep Res., vol. 21, no 2, p. 163–169 [Google Scholar]
  7. F. S. Roque et al., “Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts”, PLoS Comput. Biol., vol.7, no 8, p. e1002141, [aug 2011] [Google Scholar]
  8. A.-L. Barabasi, N. Gulbahce, et J. Loscalzo, “Network medicine: a network-based approach to human disease”, Nat. Rev. Genet., vol. 12, no 1, p. 56–68 [Google Scholar]
  9. A. Aguado, F. Moratalla-Navarro, F. Lopez-Simarro, et V. Moreno, “MorbiNet: multi-morbidity networks in adult general population. Analysis of type 2 diabetes mellitus comorbidity, Sci. Rep., vol. 10, no 1, p. 2416 [Google Scholar]
  10. C. Madlock-Brown et R. B. Reynolds, “Identifying obesity-related multimorbidity combinations in the United States”, Clin. Obes., vol. 9, no 6, p. e12336 [Google Scholar]
  11. M. van den Akker, F. Buntinx, J. F. Metsemakers, S. Roos, et J. A. Knottnerus, “Multimorbidity in general practice: prevalence, incidence, and determinants of co-occurring chronic and recurrent diseases”, J. Clin. Epidemiol., vol. 51, no 5, p. 367–375 [Google Scholar]
  12. L. S. Lim, E. Lamoureux, S. M. Saw, W. T. Tay, P. Mitchell, et T. Y. Wong, “Are myopic eyes less likely to have diabetic retinopathy?”, Ophthalmology, vol. 117, no 3, p. 524–530 [Google Scholar]
  13. M. Girvan et M. E. J. Newman, “Community structure in social and biological net-works”, Proc. Natl. Acad. Sci., vol. 99, no 12, p. 7821–7826 [Google Scholar]
  14. U. N. Raghavan, R. Albert, et S. Kumara, “Near linear time algorithm to detect community structures in large-scale networks”, Phys. Rev. E, vol. 76, no 3, p. 036106 [Google Scholar]
  15. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, et E. Lefebvre, “Fast unfolding of communities in large networks”, J. Stat. Mech. Theory Exp., vol. 2008, no 10, p. P10008 [CrossRef] [Google Scholar]
  16. P. Pons et M. Latapy, “Computing Communities in Large Networks Using Random Walks”, in Computer and Information Sciences - ISCIS 2005, Berlin, Heidelberg, [2005], p. 284–293. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.