Open Access
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01032
Number of page(s) 6
Published online 24 May 2022
  1. W. R. Reitman, Artificial Intelligence Applications for Business: Proceedings of the NYU Symposium, May, 1983. Intellect Books, 1984. [Google Scholar]
  2. A. Pannu, « Artificial Intelligence and its Application in Different Areas », vol. 4, no 10, p. 6, 2015. [Google Scholar]
  3. Edward A. Feigenbaum, « Knowledge engineering », Stanford university stanford, Califonia, USA, 1982. [Google Scholar]
  4. « FSA: Applying AI Techniques to the Familiarization Phase of Financial Decision Making ». (consulté le 19 septembre 2020). [Google Scholar]
  5. E.-J. Lee, Y.-H. Kim, N. Kim, et D.W. Kang, « Deep into the Brain: Artificial Intelligence in Stroke Imaging », J Stroke, vol. 19, no 3, p. 277–285, sept. 2017, DOI: 10.5853/jos.2017.02054. [CrossRef] [PubMed] [Google Scholar]
  6. R. Szeliski, Computer Vision. London: Springer London, 2011. DOI: 10.1007/978-1-84882-935-0. [Google Scholar]
  7. H. Amakdouf, A. Zouhri, M. El Mallahi, A. Tahiri, D. Chenouni, et H. Qjidaa, « Artificial intelligent classification of biomedical color image using quaternion discrete radial Tchebichef moments », Multimed Tools Appl, vol. 80, no 2, p. 3173–3192, janv. 2021, DOI: 10.1007/s11042-020-09781-x. [CrossRef] [Google Scholar]
  8. J. F. S. Gomes et F. R. Leta, « Applications of computer vision techniques in the agriculture and food industry: a review », Eur Food Res Technol, vol. 235, no 6, p. 989–1000, déc. 2012, DOI: 10.1007/s00217-012-1844-2. [CrossRef] [Google Scholar]
  9. D. Floreano, P. Dürr, et C. Mattiussi, « Neuroevolution: from architectures to learning », Evol. Intel., vol. 1, no 1, p. 47–62, mars 2008, DOI: 10.1007/s12065-007-0002-4. [CrossRef] [Google Scholar]
  10. K. G. Kim, « Book Review: Deep Learning », Healthc Inform Res, vol. 22, no 4, p. 351, 2016, DOI: 10.4258/hir.2016.22.4.351. [CrossRef] [Google Scholar]
  11. M. Dalto, J. Matusko, et M. Vasak, « Deep neural networks for ultra-short-term wind forecasting », in 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, mars 2015, p. 1657–1663. DOI: 10.1109/ICIT.2015.7125335. [CrossRef] [Google Scholar]
  12. A. Ferreira et G. Giraldi, « Convolutional Neural Network approaches to granite tiles classification », Expert Systems with Applications, vol. 84, p. 1–11, oct. 2017, DOI: 10.1016/j.eswa.2017.04.053. [CrossRef] [Google Scholar]
  13. M. Adan, « Unit 14. Introduction to IBM Watson Visual Recognition », p. 31, 2018. [Google Scholar]
  14. « MMA FACIAL EXPRESSION ». (consulté le 19 septembre 2020). [Google Scholar]
  15. N. L. W. Keijsers, « Neural Networks », in Encyclopedia of Movement Disorders, K. Kompoliti et L. V. Metman, Éd. Oxford: Academic Press, 2010, p. 257–259. DOI: 10.1016/B978-0-12-374105-9.00493-7. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.