Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01060
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202235101060
Published online 24 May 2022
  1. S. W. Wong, Z. C. Guo, K. Wang, Q.X. Chu. A compact tunable notchedband ultra-wideband antenna using a varactor diode. 2014 3thAsiaPacific Confer. On Antennas and Propag., Harbin, pp.161163, (2014). [Google Scholar]
  2. S.Y. Chen, Q.X. Chu: A reconfigurable dual notched-band UWB antenna. 2015 4th Asia Pacific Confer. On Antennas and Propag., Kuta, pp.103–104, (2015). [CrossRef] [Google Scholar]
  3. D. E. Anagnostou, A. A. Gheethan: A coplanar reconfigurable folded slot antenna without bias network for WLAN applications. IEEE Antennas Wireless Propag. Lett., vol.8, pp.1057–1060, (2009). [CrossRef] [Google Scholar]
  4. Wua, F., Luk, K.M.: Widband tri-polarization reconfigurable magnetoelectric dipole antenna. IEEE Trans. Antennas Propag. 65, 1633–1641, (2017). [CrossRef] [Google Scholar]
  5. Al-Yasir, Y.I. Abdullah, A.S. OjaroudiParchin, N.: Abd-Alhameed, R.A.; Noras, J.M.: A new polarizationreconfigurable antenna for 5 G applications. Electronics, 286–293. (2018) [Google Scholar]
  6. P. A. Catherwood, S. S. Bukhari, G. Watt. W.G. Whittow and J.M. Laughlin: Body-centric wireless hospital patient monitoring networks using body- contoured flexible antennas”, IET Microwaves, Antennas & Propagation. Vol. 12, I. 2, pp. 203–210, (2018). [CrossRef] [Google Scholar]
  7. Valizade, A., Ojaroudi, M., Ojaroudi, N.: CPW-fed small slot antenna with reconfigurable circular polarization and impedance bandwidth characteristics for DCS/WiMAX applications. Progress Electromagn. Res. C, 47, pp 65–72, (2015). [Google Scholar]
  8. A. Maunder; O. Taheri ; M.R.G. Fard and P. Mousavi. Calibrated Layer-Stripping Technique for Level and Permittivity Measurement With UWB Radar in Metallic Tanks. IEEE Transactions on Microwave Theory and Techniques, pp. 2322–2334, (2015). [Google Scholar]
  9. H. Khani and H. Nie.: Near-Optimal Detection of Monobit Digitized UWB Signals in the Presence of Noise and Strong Intersymbol Interference. IEEE Systems Journal, Vol. 14, I. 2, pp. 2311–2322, (2020). [CrossRef] [Google Scholar]
  10. S. Wang. G. Mao. J.A. Zhang: Joint Time-of-Arrival Estimation for Coherent UWB Ranging in Multipath Environment With Multi-User Interference. IEEE Transactions on Signal Processing, Vol. 67, I. 14, pp. 3743–3755, (2019). [CrossRef] [Google Scholar]
  11. M. S. Mohammadi, E. Dutkiewicz, Q. Zhang and X. Huang.: Optimal Energy Efficiency Link Adaptation in IEEE 802.15.6 IR-UWB Body Area Networks. IEEE Communications Letters, Vol. 18, I. 12, pp. 2193–2196, (2014). [CrossRef] [Google Scholar]
  12. IEEE, IEEE Std 802.15.6-2012. IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area Networks. pp. 23–26, (2012). [Google Scholar]
  13. H. Ullah and F. A. Tahir. A High Gain and Wideband Narrow-Beam Antenna for 5G Millimeter-Wave Applications. IEEE Access, Vol. 8, pp. 29430–29434, (2020). [CrossRef] [Google Scholar]
  14. T. Li and Z. N. Chen.: Compact Wideband Wide- Angle Polarization-Free Metasurface Lens Antenna Array for Multibeam Base Stations. IEEE Transactions on Antennas and Propagation, Vol. 68, I. 3, pp. 1378–1388, (2020). [CrossRef] [Google Scholar]
  15. S-.D. Xu, D-.F. Guan, Q. Zhang, P. You. S. Ge; X-.X. Hou; Z-.B. Yang and S-.W. Yong.: A Wide- Angle Narrowband Leaky-Wave Antenna Based on Substrate Integrated Waveguide-Spoof Surface Plasmon Polariton Structure. IEEE Antennas and Wireless Propagation Letters, Vol. 18, I. 7, pp. 1386–1389, (2019). [CrossRef] [Google Scholar]
  16. Data Sheet of MPP4203 PIN Diodes, Microsemi, Application Note [Online]. Available online: http://www.microsemi.com (accessed on 21 February 2019). [Google Scholar]
  17. Alhegazi A., Z. Zakaria, N.A. Shairi, A. Salleh, and S. Ahmed.: Compact UWB filteringantenna with controllable WLAN band rejection using defected microstrip structure. Radio Engineering, Vol. 27, pp 110–117, (2018). [Google Scholar]
  18. Altaf, A, Jung, J-W, Yang, Y, Lee, K.-Y., & Hwang, K.: Vertical-Strip-Fed Broadband Circularly Polarized Dielectric Resonator Antenna. Sensors, 17(8), 1911. 17–25, (2017). [Google Scholar]
  19. Wang, S, Lia, K, Kong, F, & Dua L.: A miniaturized triple-band planar antenna combing single-cell metamaterial structure and defected ground plane for WLAN/WiMAX applications. Journal of Electromagnetic Waves and Applications, 1–14. (2020). [Google Scholar]
  20. Gupta, S, Patil, S, Dalela, C, Kanaujia, BK.: Analysis and design of inclined fractal defected ground-based circularly polarized antenna for CA- band applications. International Journal of Microwave and Wireless Technologies pp 1–10. August (2020). [Google Scholar]
  21. Ali, M, Jaafar, H, Subahir, S, & Yusof A.L. (2012).: Gain enhancement of air substrates at 5.8GHz for microstrip antenna array. 2012 Asia- Pacific Symposium on Electromagnetic Compatibility. doi:10.1109/apemc.2012.6237872 pp 11–21. (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.