Open Access
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01064
Number of page(s) 6
Published online 24 May 2022
  1. ETSI GR mWT 012 V1.1.1: 5G Wireless Backhaul/X-Haul (2018). [Google Scholar]
  2. Stepanets, I., Odoevskii S.: Features of the application and planning of the microwave link transmission in the 5G networks. Informaciia i sviaz, no. 3 (2019). [Google Scholar]
  3. Stepanets, I., Fokin, G., Odoevskii, S.: Model of Integrated Radio Access and Wireless Backhaul for 5th Generation Network. In: International Youth Conference on Electronics, Telecommunications and Information Technologies, pp. 637–645. Springer, Cham (2021). [CrossRef] [Google Scholar]
  4. Hilt, A. : Availability and Fade Margin Calculations for 5G Microwave and MillimeterWave Anyhaul Links. Applied Sciences, 9(23), pp. 5240 (2019). [CrossRef] [Google Scholar]
  5. Hanzo, L., Webb, W.T. and Keller, T.: Single- and multi-carrier quadrature amplitude modulation. IEEE Press-John Wiley. New York, USA (2000). [Google Scholar]
  6. Torrance, J.M., Hanzo, L.: Upper bound performance of adaptive modulation in a slow Rayleigh fading channel. Electronics Letters 32(8), pp. 718–719 (1996). [CrossRef] [Google Scholar]
  7. Hanzo L., Webb W.T.: Single-and Multicarrier Quadrature Amplitude Modulation. 2nd edn. IEEE Press-John Wiley (2000). [Google Scholar]
  8. Torrance, J. M., Hanzo, L.: Optimisation of switching levels for adaptive modulation in slow Rayleigh fading. Electronics Letters 32(13), pp. 1167–1169 (1996). [CrossRef] [Google Scholar]
  9. Choi B.J., Hanzo L.: Optimum mode-switching levels for adaptive modulation systems. IEEE GLOBECOM (2001). [Google Scholar]
  10. Choi B.J., Hanzo L.: Optimum mode-switching assisted adaptive modulation. In: GLOBECOM'01. IEEE Global Telecommunications Conference, vol. 6, pp. 3316–3320 (2001). [Google Scholar]
  11. Choi B., Hanzo L.: Optimum mode-switching-assisted constant-power single-and multicarrier adaptive modulation. IEEE Transactions on Vehicular Technology 52(3), pp. 536–560 (2003). [CrossRef] [Google Scholar]
  12. Choi B.J., Hanzo L., et al.: Performance of Rake receiver assisted adaptive-modulation based CDMA over frequency selective slow Rayleigh fading channels. Electronics Letters 37(4) (2001). [Google Scholar]
  13. Liew T.H., Hanzo L.: Switching threshold and coding-rate optimisation for turbo convolutional and turbo BCH coded adaptive modulation. In: 57th IEEE Semiannual Vehicular Technology Conference, Spring. vol. 4, pp. 2167–2171 (2003). [Google Scholar]
  14. Alouini M.S., Goldsmith A.J.: Adaptive modulation over Nakagami fading channels. Wireless Personal Communications. (2000). [Google Scholar]
  15. Alouini M.S., Goldsmith A.: Adaptive M-QAM modulation over Nakagami fading channels. In: IEEE Global Communications Conference (1997). [Google Scholar]
  16. Proakis, John G., Masoud Salehi: Digital Communication. 5th edn. McGraw-Hill. (2007). [Google Scholar]
  17. Zhou, T., Tao, C., et al.: Ricean K-factor measurements and analysis for wideband highspeed railway channels at 2.35 GHz. Radioengineering 23(2), pp. 578–585 (2014). [Google Scholar]
  18. ITU-R P. 1057 Probability distributions relevant to radiowave propagation modelling (08/2019). [Google Scholar]
  19. ITU -R P.1411-10 Propagation data and prediction methods for the planning of shortrange outdoor radio communication systems and radio local area networks in the frequency range 300 MHz to 100GHz (08/2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.