Open Access
E3S Web Conf.
Volume 352, 2022
7th International Conference on Energy Science and Applied Technology (ESAT 2022)
Article Number 01090
Number of page(s) 5
Section Fossil Energy & Geological Engineering
Published online 27 June 2022
  1. Fan Tao. Research of the oi field wastewater Quality Stabilization Techniques[J]. Chemical Engineering of Oil & Gas, 2011, 40(2): 214–217. [Google Scholar]
  2. Su Yang. Determination of iron in vanadiumaluminum alloy by phenanthroline spectrophotometry[J]. Metallurgical Analysis, 2019, 39(2): 77–81. [Google Scholar]
  3. Wang Dajuan, Yang Genlan, Xiang Xiqiong, et al. Determination of Fe(II) and Total Iron in Red Sandstone by o-phenanthroline Spectrophotometry[J]. Rock and Mineral Analysis, 2020, 39(2): 216–224. [Google Scholar]
  4. Qi Jibing, Liu Youzhi, Luo Ying, et al. Determination of iron content in chelated iron desulphurization solution by phenanthroline spectrophotometry[J]. Modern Chemical Industry, 2016, 36(1): 187–190. [Google Scholar]
  5. Hao Xinhuan. Measuring Total Iron in Waste Water By Ortho Phenanthroline Photometry[J]. Corrosion & Protection in Petrochemical Industry, 2006, 23(4): 44–46. [Google Scholar]
  6. Xue Guangrong. Measurement of high content iron in positive electrode powder by atomic absorption spectrophotometer[J]. Chinese Journal of Power Sources, 2006, 30(9): 771–773. [Google Scholar]
  7. Wang Ruibin, Liu Buming, Wang Gao-xiang. Study on rapid determination of iron content in the wastewater by mercury and chromium free EDTA titration[J]. Chemical Reagents, 2007, 29(9): 551–552+574. [Google Scholar]
  8. Lian Ningxia. Investigation on Detection Method for Iron Ion in Plating Solution Based on Spectral Image Analysis[J]. Electroplating&Pollution Control, 2016, 36(3): 45–47. [Google Scholar]
  9. Wu Xueying, Wei Yajuan, Liu Xiaoling, et al. Determination of iron in regenerated zinc rawmaterial by EDTA titration method[J]. Metallurgical Analysis, 2016, 36(5): 53–57. [Google Scholar]
  10. Yu Ping, Ding Lianming, Sun Na. Reversed-phase high performance liquid chromatographic determination of nickel(II) andiron(III)[J]. Metallurgical Analysis, 2010, 30(1): 65–68. [Google Scholar]
  11. Bruno M. Soares, Rafael F. Santos, Rodrigo C. Bolzan, et al. Simultaneous determination of iron and nickel in fluoropolymers by solid sampling highresolution continuum source graphite furnace atomic absorption spectrometry[J]. Talanta, 2016, 160: 454460. [Google Scholar]
  12. Marianna Pozzatti, Flavio V. Nakadi, Maria Goreti R. Vale. Simultaneous determination of nickel and iron in vegetables of Solanaceae family using highresolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis[J]. Microchemical Journal, 2017, 133: 162167. [Google Scholar]
  13. Ringo Schwabe, Marlene Kirstin Anke, Katarzyna Szymanska, et al. Analysis of desferrioxamine-like siderophores and their capability to selectively bind metals and metalloids: development of a robust analytical RP-HPLC method[J]. Research in Microbiology, 2018, 169(10): 598–607. [CrossRef] [PubMed] [Google Scholar]
  14. National Energy Commission. Method for analysis of oilfiled water SY/T 5523-2016[S]. [Google Scholar]
  15. Xie Juan, Guo Qian, Bai Haitao. Determination of calcium and magnesium in oilfield produced water by ICP-AES[J]. Chinese Journal of Analysis Laboratory, 2016, 35(2): 141–145. [Google Scholar]
  16. Lais N. Pires, Fabio S. de Dias, Leonardo S.G. Teixeira. Assessing the internal standardization of the direct multi-element determination in beer samples through microwave-induced plasma optical emission spectrometry[J]. Analytica Chimica Acta, 2019, (1090): 31–38. [CrossRef] [PubMed] [Google Scholar]
  17. Liang Wen Jun, Zhu Hong Yu, Cai SiLai, et al. Determination of Iron, Copper, Cadmium and Tin in Lead and Lead Alloys by ICP-AES[J]. Chinese Journal of Spectroscopy Laboratory, 2008, 25(6): 1143–1150. [Google Scholar]
  18. I. Mounteney, A.K. Burton, A. R. Farrant, et al. Heavy mineral analysis by ICP-AES a tool to aid sediment provenancing[J]. Journal of Geochemical Exploration, 2018, (184):1–10. [CrossRef] [Google Scholar]
  19. Liu Xinyuan, Li Xia, Dong Linan, et al. Simultaneous determination of iron and lead in methanesulfonate tin electroplating bath by ICP-AES[J]. Electropating&Finishing, 2017, 36(21): 1156–1159. [Google Scholar]
  20. Tao Meijuan, Chen Zhongying, Yan Guoqiang, et al. ICP-AES Determination of Mn, Fe, Ni, Mo and Win Co-Cr-Mo Alloys[J]. PTCA(PART B: CHEM.ANAL.), 2010, 46(8): 879–881. [Google Scholar]
  21. Zhang Wen-Pin, Wu Xiao-Yang, Shu Li, et al. On Determination of Iron and Copper in Boiler Water Samples from Power Plant using ICP-AES[J]. Journal of Southwest China Normal University(Natural Science Edition), 2017, 42(3): 9095. [Google Scholar]
  22. Guo Jing. Determination of Trace Calcium, Sodium, Aluminum, Iron, Nickel and Silicon in Catalytic Slurry by Crucible Ashing-Inductively Coupled Plasma Atomic Emission Spectrometry[J]. PTCA(PART B:CHEM.ANAL.), 2020, 56(3): 360362. [Google Scholar]
  23. Pan Hui, Feng Guangyong, Kang Yuan. Determination of the contents of Cd, Cr, Ni in electroplating discharged wastewater by the method of standard addition of ICP-AES[J]. Industrial Water Treatment, 2014, 34(12): 82–83+90. [Google Scholar]
  24. Shi Ruirui, Hu Dan, Ye Tao, et al. Determination of hazardous elements in poly aluminum chloride by acid hydrolysis-inductively coupled plasma atomic emission spectroscopy[J]. Industrial Water Treatment, 2020, 40(8): 101–103. [Google Scholar]
  25. Ma Yun, Li Qian, Tian Peirong, et al. Study on Factors of Influencing the Determination of Lanthanide Tracers in Flowed-back Fracturing Liquid by Using ICP-AESMethod[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2016, 31(5): 73–77. [Google Scholar]
  26. Ministry of Water Resources of the People's Republic of China. Determination of 34 elements(Pb, Cd, V, P etc.). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) SL394.1-2007[S]. [Google Scholar]
  27. Zi Renxuan. Plasma Emission Spectrometric Analysis (second edition)[M]. Beijing: Chemical Industry Press, 2011: 161. [Google Scholar]
  28. Wan Enfa. Calculation of mineralization from conductivity[J]. Shanghai Environmental Scienee, 1992, 11(6): 27–28. [Google Scholar]
  29. State Environmental Protection Administration. Water quality-Determination of Iron-phenanthroline spectrophotometry HJ/T 345-2007[S]. [Google Scholar]
  30. Ahmadir, Rezaeeam, Anvarim, et al. Optimization of Cr(VI) removal by sulfate-reducing bacteria using response surface methodology[J]. Desalination and Water Treatment, 2016, 57(24): 11096–11102. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.