Open Access
E3S Web Conf.
Volume 352, 2022
7th International Conference on Energy Science and Applied Technology (ESAT 2022)
Article Number 03040
Number of page(s) 4
Section Energy Sustainability & Energy-Related Environmental Science
Published online 27 June 2022
  1. Gao, L.; Yan, X., Nanozymes: an emerging field bridging nanotechnology and biology. Sci China Life Sci 2016, 59 (4), 400–2. [CrossRef] [PubMed] [Google Scholar]
  2. Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2007, 2 (9), 577–83. [CrossRef] [PubMed] [Google Scholar]
  3. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A., Electric field effect in atomically thin arbon films. Science 2004, 306 (5696), 666–9. [Google Scholar]
  4. Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X., Graphene oxide: intrinsic peroxidase catalytic activity and its pplication to glucose detection. Adv Mater 2010, 22 (19), 2206–10. [CrossRef] [PubMed] [Google Scholar]
  5. Pakdel, A.; Bando, Y.; Golberg, D., Nano boron nitride flatland. Chem Soc Rev 2014, 43 (3), 934–59. [CrossRef] [PubMed] [Google Scholar]
  6. Tan, C.; Zhang, H., Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 2015, 44 (9), 2713–31. [CrossRef] [PubMed] [Google Scholar]
  7. Bai, W.; Li, S.; Ma, J.; Cao, W.; Zheng, J., Ultrathin 2D metal-organic framework (nanosheets and nanofilms)-based xD-2D hybrid nanostructures as biomimetic enzymes and supercapacitors. Journal of Materials Chemistry A 2019, 7 (15), 9086–9098. [CrossRef] [Google Scholar]
  8. Wang, Y.; Zhao, M.; Ping, J.; Chen, B.; Cao, X.; Huang, Y.; Tan, C.; Ma, Q.; Wu, S.; Yu, Y.; Lu, Q.; Chen, J.; Zhao, W.; Ying, Y.; Zhang, H., Bioinspired Design of Ultrathin 2D Bimetallic Metal-Organic-Framework Nanosheets Used as Biomimetic Enzymes. Adv Mater 2016, 28 (21), 4149–55. [CrossRef] [PubMed] [Google Scholar]
  9. Zhu, Q.L.; Xu, Q., Metal-organic framework composites. Chem Soc Rev 2014, 43 (16), 5468–512. [CrossRef] [PubMed] [Google Scholar]
  10. Huang, Y.; Zhao, M.; Han, S.; Lai, Z.; Yang, J.; Tan, C.; Ma, Q.; Lu, Q.; Chen, J.; Zhang, X.; Zhang, Z.; Chen, B.; Zong, Y.; Zhang, H., Growth of Au Nanoparticles on 2D Metalloporphyrinic Metal-Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. Adv Mater 2017, 29 (32). [Google Scholar]
  11. Zhao, R.; Zhao, X.; Gao, X., Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides. Chemistry 2015, 21 (3), 960–4. [CrossRef] [Google Scholar]
  12. Alsharabasy, A.M.; Pandit, A.; Farras, P., Recent Advances in the Design and Sensing Applications of Hemin/Coordination Polymer-Based Nanocomposites. Adv Mater 2020, e2003883. [PubMed] [Google Scholar]
  13. Cha, D.Y.; Parravano., G., Surface reactivity of supported gold. I. Oxygen transfer between carbon monoxide and carbon dioxide. J. Catal. 1970, 18, 200–211. [CrossRef] [Google Scholar]
  14. Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M., The catalytic activity of "naked" gold particles. Sngew Chem Int Ed Engl 2004, 43 (43), 5812–5. [CrossRef] [PubMed] [Google Scholar]
  15. Tao, Y.; Ju, E.; Ren, J.; Qu, X., Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater 2015, 27 (6), 1097–104. [CrossRef] [PubMed] [Google Scholar]
  16. Jv, Y.; Li, B.; Cao, R., Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun (Camb) 2010, 46 (42), 8017–9. [CrossRef] [PubMed] [Google Scholar]
  17. He, W.; Zhou, Y.-T.; Wamer, W.G.; Hu, X.; Wu, X.; Zheng, Z.; Boudreau, M.D.; Yin, J.-J., Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2013, 34 (3), 765–773. [CrossRef] [PubMed] [Google Scholar]
  18. Zhao, M.; Wang, Y.; Ma, Q.; Huang, Y.; Zhang, X.; Ping, J.; Zhang, Z.; Lu, Q.; Yu, Y.; Xu, H.; Zhao, Y.; Hang, H., Ultrathin 2D Metal-Organic Framework anosheets. Adv Mater 2015, 27 (45), 7372–8. [CrossRef] [PubMed] [Google Scholar]
  19. Lu, G.; Li, S.; Guo, Z.; Farha, O.K.; Hauser, B.G.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; DuChene, J.S.; Zhang, H.; Zhang, Q.; Chen, X.; Loo, S.C.; Wei, W.D.; Yang, Y.; Hupp, J.T.; Huo, F., Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat Chem 2012, 4 (4), 310–6. [CrossRef] [PubMed] [Google Scholar]
  20. Mas-Balleste, R.; Gomez-Navarro, C.; Gomez-Herrero, J.; Zamora, F., 2D materials: to graphene and beyond. Nanoscale 2011, 3 (1), 20–30. [CrossRef] [PubMed] [Google Scholar]
  21. Huang, X.; Wu, P., A Facile, High-Yield, and Freeze-and-Thaw-Assisted Approach to Fabricate MXene with Plentiful Wrinkles and Its Application in On-Chip Micro-Supercapacitors. Advanced Functional aterials 2020, 30 (12). [Google Scholar]
  22. Han, L.J.; Zheng, D.; Chen, S.G.; Zheng, H.G.; Ma, J., A Highly Solvent-Stable Metal-Organic Framework Nanosheet: Morphology Control, Exfoliation, and Luminescent Property. Small 2018, 14 (17), e1703873. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.