Open Access
Issue |
E3S Web Conf.
Volume 353, 2022
8th International Conference on Energy and City of the Future (EVF’2021)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 18 | |
Section | Energy & Management | |
DOI | https://doi.org/10.1051/e3sconf/202235302005 | |
Published online | 29 June 2022 |
- R. Absi, Time-dependent eddy viscosity models for wave boundary layers, In: Coastal Engineering 2000, Proc. 27th International Conference on Coastal Engineering, Billy L. Edge (Ed.), ASCE Press, ISBN 0-7844-0549-2, vol. 2, pp. 1268–1281 (2001). [CrossRef] [Google Scholar]
- R. Absi, Analytical solutions for the modeled k-equation, Journal of Applied Mechanics, Transactions of the ASME, American Society of Mechanical Engineers, 75(4), 044501 (2008). [CrossRef] [Google Scholar]
- R. Absi, A simple eddy viscosity formulation for turbulent boundary layers near smooth walls. C.R Mecanique, Elsevier, 337, 158–165 (2009). [CrossRef] [Google Scholar]
- R. Absi, An ordinary differential equation for velocity distribution and dip phenomenon in open-channel flows, Journal of Hydraulic Research, IAHR, Taylor & Francis, 49(1), 82–89 (2011). [CrossRef] [Google Scholar]
- R. Absi, Eddy viscosity and velocity profiles in fully-developed turbulent channel flows. Fluid Dynamics, Springer, 54(1), 137–147 (2019). [CrossRef] [Google Scholar]
- R. Absi, Analytical eddy viscosity model for velocity profiles in the outer part of closed-and open-channel flows, Fluid Dynamics, 56(4), pp. 577–586 (2021). [CrossRef] [Google Scholar]
- R. Absi, Reinvestigating the parabolic-shaped eddy viscosity profile for free surface flows, Hydrology, 8(3), 126 (2021). [CrossRef] [Google Scholar]
- R. Absi, C. Di Nucci On the accuracy of analytical methods for turbulent flows near smooth walls, Comptes Rendus Mecanique, Academie des Sciences, Elsevier, 340(9), 641–645 (2012). [CrossRef] [Google Scholar]
- G. Alfonsi and L. Primavera, The structure of turbulent boundary layers in the wall region of plane channel flow. Proc. R. Soc. A, 463, 593–612 (2007). [CrossRef] [Google Scholar]
- G. Barenblatt, Scaling (Cambridge University Press, 2003). [CrossRef] [Google Scholar]
- A. Bilgil and H. Altun, Investigation of flow resistance in smooth open channels using artificial neural networks. Flow Measurement and Instrumentation, 19, 404–408 (2008). [CrossRef] [Google Scholar]
- D. Coles, The law of the wake in turbulent boundary layer. J. Fluid Mech., 1, 191–226 (1956). [CrossRef] [Google Scholar]
- R. Dean, Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Eng., 100, 215–223 (1978). [CrossRef] [Google Scholar]
- N. El Gharbi, R. Absi, A. Benzaoui, R. Bennacer, An improved near wall treatment for turbulent channel flows, International Journal of Computational Fluid Dynamics, Taylor & Francis, 25(1), 41–46 (2011). [CrossRef] [Google Scholar]
- N. El Gharbi, R. Absi, A. Benzaoui, Effect of different near-wall treatments on indoor airflow simulations, Journal of Applied Fluid Mechanics, 5(4), 63–70 (2012). [Google Scholar]
- X. Fang, Y. Xu and Z. Zhou, New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations. Nuclear Engineering and Design, 241, 897–902 (2011). [CrossRef] [Google Scholar]
- J. C. Gibbings, On the measurement of skin friction from the turbulent velocity profile. Flow Meas. lnstrum., 7(2), 99–107 (1996). [CrossRef] [Google Scholar]
- J. Hinze, Turbulence (McGraw-Hill, New York, 1975). [Google Scholar]
- S. Hoyas and J. Jimenez, Scaling of velocity fluctuations in turbulent channels up to Rer=2003. Phys. of Fluids, 18, 011702 (2006). [CrossRef] [Google Scholar]
- K. Iwamoto, Database of fully developed channel flow. THTLAB Internal Report No. ILR0201, Dept. Mech. Eng., Univ. Tokyo. Tokyo (2002). [Google Scholar]
- D. D. Joseph and B. H. Yanga, Friction factor correlations for laminar, transition and turbulent flow in smooth pipes. Physica D, 239, 1318–1328 (2010). [CrossRef] [Google Scholar]
- F. Laadhari, On the evolution of maximum turbulent kinetic energy production in a channel flow. Physics of Fluids, 14(10), L65–L68 (2002). [CrossRef] [Google Scholar]
- P. Li, J. E. Seem and Y. Li, A new explicit equation for accurate friction factor calculation of smooth pipes. International Journal of Refrigeration, 34, 1535–1541 (2011). [CrossRef] [Google Scholar]
- B. McKeon, C. Swanson, M. Zagarola, R. Donnelly and A. Smits, Friction factors for smooth pipe flow. J. Fluid Mech., 511, 41–44 (2004). [CrossRef] [Google Scholar]
- B. McKeon, M. Zagarola and A. Smits, A new friction factor relationship for fully developed pipe flow. J. Fluid Mech., 538, 429–443 (2005). [CrossRef] [Google Scholar]
- R. Moser, J. Kim and N. Mansour, Direct numerical simulation of turbulent channel flow up to Ret5590. Physics of Fluids, 11(4), 943–945 (1999). [CrossRef] [Google Scholar]
- M. M. Rahman and T. Siikonen, An eddy viscosity model with near-wall modifications, Int. J. Numer. Meth. Fluids, 49, 975–997 (2005). [CrossRef] [Google Scholar]
- T. Wei and W. Willmarth, Reynolds-number effects on the structure of a turbulent channel flow. J. Fluid Mech., 204, 57–95 (1989). [CrossRef] [Google Scholar]
- M. Welderufael, R. Absi, Y. Mélinge, Assessment of velocity profile models for turbulent smooth wall open channel flows, ISH Journal of Hydraulic Engineering, Taylor & Francis. 28(sup1), 69–79 (2022). [Google Scholar]
- E.-S. Zanoun, F. Durst and H. Nagib, Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Physics of fluids, 15(10), 3079–3089 (2003). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.