Open Access
Issue
E3S Web Conf.
Volume 353, 2022
8th International Conference on Energy and City of the Future (EVF’2021)
Article Number 03005
Number of page(s) 8
Section Materials & Factories of the Future
DOI https://doi.org/10.1051/e3sconf/202235303005
Published online 29 June 2022
  1. C. Çetinkaya. An investigation of the wear behaviors of white cast irons under different compositions [J]. Materials and Design, 2006, 27: 437–445. [CrossRef] [Google Scholar]
  2. K. L. Hayrynen, K. R. Brandenberg. Carbidic austempered ductile iron (CADI) -the new wear material [J]. AFS Transactions, 2003, 111: 845–850. [Google Scholar]
  3. J. H. Liu, G. L. Li, H. Y. Zhang, et al. Study on microstructure and properties of carbidic austempered ductile iron (CADI) [J]. Proceedings of 69th World Foundry Congress (WFC 2010), 2010, 2: 423–426. [Google Scholar]
  4. M. Lagarde, A. Basso, R. C. Dommarco, et al. Development and characterization of a new type of ductile iron with a novel multi-phase microstructure [J]. ISIJ International, 2011, 51: 645–650. [CrossRef] [Google Scholar]
  5. S. Panneerselvam, C. J. Martis, S. K. Putatunda, et al. An investigation on the stability of austenite in austempered ductile cast iron (ADI) [J]. Materials Science and Engineering A, 2016, 626: 237–246. [Google Scholar]
  6. S. Solic, M. Godec, Z. Schauperl, et al. Improvement in abrasion wear resistance and microstructural changes with deep cryogenic treatment of austempered ductile cast iron (ADI) [J]. Metallurgical and Materials Transactions A, 2016, 47: 50585070. [CrossRef] [Google Scholar]
  7. A. Sinlah, D. Handayani, R. C. Voigt, et al. Effects of microstructure and strength on wear performance in rough milling of austempered ductile iron [J]. International Journal of Cast Metals Research, 2016, 29:62–67. [CrossRef] [Google Scholar]
  8. ASTM A897/A897M-15 Standard Specification for Austempered Ductile Iron Castings. [Google Scholar]
  9. S. K. Putatunda, and P. K. Gadicherla: Influence of austenitizing temperature on fracture toughness of a low manganese austempered ductile iron (ADI) with ferritic as cast structure [J]. Materials Science and Engineering A, 1999, 268: 1531. [CrossRef] [Google Scholar]
  10. M. Delia, M. Alaalam, and M. Grech: Effect of austenitising conditions on the impact properties of an alloyed austempered ductile iron of initially pearlitic matrix structure [J]. Journal of Materials Engineering and Performance, 1998, 7: 265–272. [CrossRef] [Google Scholar]
  11. C.D. Wang, R.Z. Liu, S.J. Li, et al. Effect of austempering temperature on microstructure of ausferrite in austempered ductile iron [J]. Materials Science and Technology, 2019, 35: 1329–1336. [CrossRef] [Google Scholar]
  12. P. Sellamuthu, D.G.H. Samuel, D. Dinakaran, et al. Austempered ductile iron (ADI): influence of austempering temperature on microstructure, mechanical and wear properties and energy consumption [J]. Metals, 2018, 8: 53. [CrossRef] [Google Scholar]
  13. B.X. Wang, M.S. He, G.C. Barber, et al. Rolling contact fatigue resistance of austempered ductile iron processed at various austempering holding times [J]. Wear, 2018, 398: 41–46. [CrossRef] [Google Scholar]
  14. S. Laino, J. A. Sikora, R. C. Dommarco. Development of wear resistant carbidic austempered ductile iron (CADI) [J]. Wear, 2008, 265: 1–7. [CrossRef] [Google Scholar]
  15. M. Kranc, Z. Pirowski, A. Bitka. CADI - Carbidic austempered ductile iron. Control structure in order to improve the tribological properties. Proceedings of 71st World Foundry Congress (WFC 2014), 2014, 1:1398–1402. [Google Scholar]
  16. K. L. Hayrynen, K. R. Brandenberg. Carbidic austempered ductile iron (CADI) -the new wear material [J]. AFS Transactions, 2003, 111: 845–850. [Google Scholar]
  17. Y.C. Peng, H.J. Jin, J.H. Liu, et al. Influence of cooling rate on the microstructure and properties of a new wear resistant carbidic austempered ductile iron [J]. Materials Characterization, 2012, 72:53–58. [CrossRef] [Google Scholar]
  18. A. Refaey, N. Fatahalla. Effect of microstructure on properties of ADI and low alloyed ductile iron [J]. Journal of Materials Science, 2003, 38: 351–362. [CrossRef] [Google Scholar]
  19. C.F. Han, Y.F. Sun, Y. Wu, et al. Effects of vanadium and austempering temperature on microstructure and properties of CADI [J]. Metallography, Microstructure, and Analysis, 2015, 3: 135–145. [CrossRef] [Google Scholar]
  20. P.H. Yang, H.G. Fu, J. Lin, et al. Experimental and ab initio study of the influence of a compound modifier on carbidic ductile iron [J]. Metallurgical Research and Technology, 2019, 116: 306. [CrossRef] [EDP Sciences] [Google Scholar]
  21. C.F. Han, Q.Q. Wang, Y.F. Sun, et al. Effects of molybdenum on the wear resistance and corrosion resistance of carbidic austempered ductile iron [J]. Metallography, Microstructure, and Analysis, 2015, 4:298–304. [CrossRef] [Google Scholar]
  22. A. Likhite, P. Parhad. Effect of austenitization temperature on wear behavior of carbidic austempered ductile iron (CADI) [J]. International Scholarly and Scientific Research & Innovation, 2014, 8: 510–512. [Google Scholar]
  23. V. Dakre, D.R. Peshwe, S.U. Pathak, et al. Effect of austenitization temperature on microstructure and mechanical properties of low-carbon-equivalent carbidic austempered ductile iron [J]. International Journal of Minerals Metallurgy and Materials, 2018, 25: 770–778. [CrossRef] [Google Scholar]
  24. O. Eric-Cekic, L. Sidjanin, D. Rajnovic. Austempering kinetics of Cu-Ni alloyed austempered ductile iron [J]. Metals & Materials International, 2014, 20 (6): 1131–1138. [CrossRef] [Google Scholar]
  25. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, et al. Design of novel high strength bainitic steels: Part 1 [J]. Materials Science and Technology, 2001, 17 (5): 512–516. [CrossRef] [Google Scholar]
  26. H.K.D.H. Bhadeshia, 52nd Hatfield Memorial Lecture Large chunks of very strong steel [J]. Materials Science and Technology., 2005. 21 (11): 1293–1302. [CrossRef] [Google Scholar]
  27. D. Quidort, Y.J.M. Brechet, Isothermal growth kinetics of bainite in 0.5% C steels [J]. Acta Materialia, 2001, 49: 4161–4170. [CrossRef] [Google Scholar]
  28. H. Beladi, V. Tari, I.B. Timokhina, et al. On the crystallographic characteristics of nanobainitic steel [J]. Acta Materialia, 2017, 127: 426–437. [CrossRef] [Google Scholar]
  29. W. Gong, Y. Tomota, S. Harjo, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Materialia, 2015, 85: 243–249. [CrossRef] [Google Scholar]
  30. W. Gong, Y. Tomota, Y. Adachi, et al. Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel [J]. Acta Materialia, 2013, 61(11): 4142–4154. [CrossRef] [Google Scholar]
  31. N. Diomidis, J.P. Celis, P. Ponthiaux, et al. A methodology for the assessment of the tribocorrosion of passivating metallic materials [J]. Lubrication Science, 2009, 21: 53–67. [CrossRef] [Google Scholar]
  32. J. Jiang, M.M. Stack, A. Neville. Modelling the tribo-corrosion interaction in aqueous sliding conditions [J]. Tribology International, 2002, 35: 669–679. [CrossRef] [Google Scholar]
  33. R.J.K. Wood, Erosion-corrosion interactions and their effect on marine and offshore materials [J]. Wear, 2006, 261: 1012–1023. [CrossRef] [Google Scholar]
  34. E. Huttunen-Saarivirtaa, E. Isotahdona, J. Metsäjokia, et al. Tribocorrosion behaviour of aluminium bronze in 3.5 wt.% NaCl solution [J]. Corrosion Science., 2018, 144: 207–223. [CrossRef] [Google Scholar]
  35. P.H. Yang, H.G. Fu, X.W. Zhao, et al. Wear behavior of CADI obtained at different austenitizing temperatures [J]. Tribology International,, 2019, 140: 105876. [CrossRef] [Google Scholar]
  36. I. Garcia, D. Drees, J.-P. Celis. Corrosion-wear of passivating materials in sliding contacts based on a concept of active wear track area [J]. Wear, 2001, 249: 452–460. [CrossRef] [Google Scholar]
  37. A. Iwabuchi, J.W. Lee, M. Uchidate. Synergistic effect of fretting wear and sliding wear of Coalloy and Ti-alloy in Hanks' solution [J]. Wear, 2007, 263: 492–500. [CrossRef] [Google Scholar]
  38. N.K. Tse, N.P. Suh. Chemical effects in sliding wear of aluminum [J]. Wear, 1977, 44: 145–162. [CrossRef] [Google Scholar]
  39. P. Yang, H. Fu, R. Absi, R. Bennacer, J. Lin, X. Guo, Improved corrosive wear resistance of carbidic austempered ductile iron by addition of Cu, Materials Characterization, 168, 110577 (2020). [CrossRef] [Google Scholar]
  40. P. Yang, H. Fu, R. Absi, R. Bennacer, A.-M. Darcherif, J. Lin, X. Guo, Microstructure evolution of carbidic austempered ductile iron at different austempering temperatures, Journal of Materials Science, 56(7), pp. 4843–4857 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.