Open Access
E3S Web Conf.
Volume 354, 2022
International Energy2021-Conference on “Renewable Energy and Digital Technologies for the Development of Africa”
Article Number 01001
Number of page(s) 8
Section Energy Planning and Storage
Published online 13 July 2022
  1. Kauffmann C. Energy and Poverty in Africa. Paris: Organisation for Economic Co-operation and Development, OECD Development Centre Policy Insights Report; 2005. [Google Scholar]
  2. Pollet BG, Staffell I, Adamson K-A. Current energy landscape in the Republic of South Africa. International Journal of Hydrogen Energy 2015; 40:16685–701. [CrossRef] [Google Scholar]
  3. Renner S, Alake T. Solar Power May Get Boost From Africa’s Biggest Oil Exporter. Https://WwwBloombergCom/News/Articles/2017-03-07/Solar-Power-May-Get-Boost-from-Africa-s-iggest-Oil-Exporter, [Accessed 2017-07-31 23:02:56] 2017:1. [Google Scholar]
  4. A. Fopah-Lele, A. Kabore-Kere, J. G. Tamba, et I. Yaya-Nadjo, « Solar electricity storage through green hydrogen production: A case study », Int. J. Energy Res., vol. 45, no 9, p. 13007–13021, 2021, doi: 10.1002/er.6630. [CrossRef] [Google Scholar]
  5. Armaroli N, Balzani V. The Hydrogen Issue. ChemSusChem 2011;4:21–36. doi:10.1002/cssc.201000182. [CrossRef] [PubMed] [Google Scholar]
  6. Lamy C. From hydrogen production by water electrolysis to its utilization in a PEM fuel cell or in a SO fuel cell: Some considerations on the energy efficiencies. International Journal of Hydrogen Energy 2016;41:15415–25. doi:10.1016/j.ijhydene.2016.04.173. [CrossRef] [Google Scholar]
  7. Cook B. Introduction to fuel cells and hydrogen technology. Engineering Science and Education Journal 2002;11:205–16. doi:10.1049/esej:20020601. [CrossRef] [Google Scholar]
  8. Larminie J, Dicks A, Larminie J, Dicks A. Introduction. Fuel Cell Systems Explained, John Wiley & Sons, Ltd,.; 2003, p. 1–24. [Google Scholar]
  9. Veziroğlu A, Macário R. Countries to benefit most from early transition to hydrogen fueled transportation: Merit factor analysis. Int J Energy Res 2013;37:781–810. doi:10.1002/er.3040. [CrossRef] [Google Scholar]
  10. Z’Graggen A, Haueter P, Trommer D, Romero M, de Jesus JC, Steinfeld A. Hydrogen production by steam-gasification of petroleum coke using concentrated solar power—II Reactor design, testing, and modeling. International Journal of Hydrogen Energy 2006;31:797–811. doi:10.1016/j.ijhydene.2005.06.011. [CrossRef] [Google Scholar]
  11. Koumi Ngoh S, Njomo D. An overview of hydrogen gas production from solar energy. Renewable and Sustainable Energy Reviews 2012;16:6782–92. doi:10.1016/j.rser.2012.07.027. [CrossRef] [Google Scholar]
  12. Amuzu-Sefordzi B, Huang J, Sowa DMA, Baddoo TD. Biomass-derived hydrogen energy potential in Africa. Environ Prog Sustainable Energy 2016;35:289–97. doi:10.1002/ep.12212. [CrossRef] [Google Scholar]
  13. Hosseini SE, Abdul Wahid M, Jamil MM, Azli AAM, Misbah MF. A review on biomass-based hydrogen production for renewable energy supply. Int J Energy Res 2015;39:1597–615. doi:10.1002/er.3381. [CrossRef] [Google Scholar]
  14. Tachibana Y, Vayssieres L, Durrant JR. Artificial photosynthesis for solar water-splitting. Nat Photon 2012;6:511–8. doi:10.1038/nphoton.2012.175. [CrossRef] [Google Scholar]
  15. Abanades S, Charvin P, Flamant G, Neveu P. Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 2006;31:2805–22. doi:10.1016/ [CrossRef] [Google Scholar]
  16. Koumi Ngoh S, Ayina Ohandja LM, Kemajou A, Monkam L. Design and simulation of hybrid solar high-temperature hydrogen production system using both solar photovoltaic and thermal energy. Sustainable Energy Technologies and Assessments 2014;7:279–93. doi:10.1016/j.seta.2014.05.002. [CrossRef] [Google Scholar]
  17. Chatterjee KK. Macro-Economics of Mineral and Water Resources (Page 92). vol. doi. 10.1007/978-3-319-15054-3. 1st ed. New Delhi, India: Springer International Publishing & Capital Publishing Company; 2015. [CrossRef] [Google Scholar]
  18. Weiner SC. Advancing the hydrogen safety knowledge base. International Journal of Hydrogen Energy 2014;39:20357–61. doi:10.1016/j.ijhydene.2014.08.001. [CrossRef] [Google Scholar]
  19. Zini G, Tartarini P. Solar Hydrogen Energy Systems - Science and Technology for the Hydrogen Economy. Italia: Springer-Verlag Mailand; 2012. [CrossRef] [Google Scholar]
  20. Silveira JL, editor. Sustainable Hydrogen Production Processes - Energy, | José Luz Silveira | Springer. Switzerland: Springer International Publishing; 2017. [Google Scholar]
  21. Markowitz MB. Stationary Power. Fuel Cell & Hydrogen Energy Association 2015. (accessed December 7, 2016). [Google Scholar]
  22. Friberg R. A photovoltaic solar-hydrogen power plant for rural electrification in India. Part 1: a general survey of technologies applicable within the solar-hydrogen concept. International Journal of Hydrogen Energy 1993;18:853–82. doi:10.1016/0360-3199(93)90140-6. [CrossRef] [Google Scholar]
  23. Amoo LM, Fagbenle RL. An integrated impact assessment of hydrogen as a future energy carrier in Nigeria’s transportation, energy and power sectors. International Journal of Hydrogen Energy 2014;39:12409–33. doi:10.1016/j.ijhydene.2014.06.022. [CrossRef] [Google Scholar]
  24. International Electrotechnical Commission (IEC). IEC 62282-3-100 Ed. 1.0 b:2012 Fuel cell technologies - Part 3-100: Stationary fuel cell power systems - safety. 1.0 2012-02. USA: American National Standards Institute (ANSI); 2012. [Google Scholar]
  25. Hoagland W. IEA-HIA_Task-31-Combined-Final-Technical-Report_Final. Colorado, USA: International Energy Agency - Hydrogen Implementing Agreement (IEA-HIA); 2014. [Google Scholar]
  26. Mentis D, Hermann S, Howells M, Welsch M, Siyal SH. Assessing the technical wind energy potential in Africa a GIS-based approach. Renewable Energy 2015;83:110–25. doi:10.1016/j.renene.2015.03.072. [CrossRef] [Google Scholar]
  27. Ofualagba G, Charles IK, Okiemute OA. Solar Hydrogen Fuel Cell Technology, Principle, Applications and Market. Journal of Energy Technologies and Policy 2012;2:32–41. [Google Scholar]
  28. Amoo LM, Fagbenle RL. Hydrogen energy’s key contributions to the sustainable energy mix of a low- carbon future in Nigeria. International Journal of Sustainable Energy 2014;33:742–65. doi:10.1080/14786451.2013.765427. [CrossRef] [Google Scholar]
  29. Douglas T. Dynamic modelling and simulation of a solar-PV hybrid battery and hydrogen energy storage system. Journal of Energy Storage 2016;7:104–14. doi:10.1016/j.est.2016.06.001. [CrossRef] [Google Scholar]
  30. Khalatbari A. Au Mali, de l’électricité à partir de l’hydrogène naturel. Sciences et Avenir 2016. (accessed May 15, 2017). [Google Scholar]
  31. Topriska E, Kolokotroni M, Dehouche Z, Wilson E. Solar hydrogen system for cooking applications: Experimental and numerical study. Renewable Energy 2015;83:717–28. doi:10.1016/j.renene.2015.05.011. [CrossRef] [Google Scholar]
  32. Topriska EV, Kolokotroni M, Novieto DT, Dehouche Z, Wilson EA. Analysis of the demand of domestic cooking fuels in Ghana: field work and a case study of the application of solar hydrogen cooking system, 2015. [Google Scholar]
  33. Topriska E, Kolokotroni M, Dehouche Z, Novieto DT, Wilson EA. The potential to generate solar hydrogen for cooking applications: Case studies of Ghana, Jamaica and Indonesia. Renewable Energy 2016;95:495–509. doi:10.1016/j.renene.2016.04.060. [CrossRef] [Google Scholar]
  34. Garland C, Jagoe K, Wasirwa E, Nguyen R, Roth C, Patel A, et al. Impacts of household energy programs on fuel consumption in Benin, Uganda, and India. Energy for Sustainable Development 2015;27:168–73. doi:10.1016/j.esd.2014.05.005. [CrossRef] [Google Scholar]
  35. Faye O, Eduok U, Szpunar J, Szpunar B, Samoura A, Beye A. Hydrogen storage on bare Cu atom and Cu-functionalized boron-doped graphene: A first principles study. International Journal of Hydrogen Energy 2017;42:4233–43. doi:10.1016/j.ijhydene.2016.10.031. [CrossRef] [Google Scholar]
  36. Nwabueze Agbo S. Atlas der Potenziale der grünen Wasserstofferzeugung in Afrika – H2 Atlas Africa. Juelich Forschungszentrum 2020. (accessed September 22, 2020). [Google Scholar]
  37. Juelich C. Forschungszentrum Jülich - Press releases - “Green” hydrogen made in Africa n.d. (accessed September 22, 2020). [Google Scholar]
  38. Tigret D. Les techniques de production de l’hydrogène et les risques associés (Technologies of hydrogen production and associated risks). Verneuil en Halatte Oise (France): INERIS (Institut National de l’Environnement industriel et des risques); 2008. [Google Scholar]
  39. Blanco H, Faaij A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renewable and Sustainable Energy Reviews 2018;81:1049–86. [CrossRef] [Google Scholar]
  40. di Gaeta A, Reale F, Chiariello F, Massoli P. A dynamic model of a 100 kW micro gas turbine fuelled with natural gas and hydrogen blends and its application in a hybrid energy grid. Energy 2017;129:299–320. [CrossRef] [Google Scholar]
  41. Zhou JH, Cheung CS, Leung CW. Combustion, performance, regulated and unregulated emissions of a diesel engine with hydrogen addition. Applied Energy 2014;126:1–12. [CrossRef] [Google Scholar]
  42. Pana C, Negurescu N, Cernat A, Nutu C, Mirica I, Fuiorescu D. Experimental Aspects of the Hydrogen Use at Diesel Engine. Procedia Engineering 2017;181:649–57. [CrossRef] [Google Scholar]
  43. From 2010 – 2019, the cost of energy production from solar photovoltaics fell by more than 80% and the cost of energy production from onshore wind fell by nearly 40%. See,Energy%20Agency%20(IRENA)%20says. [Google Scholar]
  44. Ali DM, Salman SK. A Comprehensive Review of the Fuel Cells Technology and Hydrogen Economy. Proceedings of the 41st International Universities Power Engineering Conference, vol. 1, 2006, p. 98–102. [CrossRef] [Google Scholar]
  45. Detlof von Oertzen, Issues, Challenges and Opportunities to Develop Green Hydrogen in Namibia, ISBN: 978-99945-52-64-1, October 2021. : John Meinert Printing (Pty) Ltd, Windhoek, Namibia [Google Scholar]
  46. Accessed 23 march 2022 [Google Scholar]
  47. Accessed 23 march 2022 [Google Scholar]
  48.,of%20up%20to%20ten%20gigawatts. Accessed 24 may 2022 [Google Scholar]
  49. Blanco H, Faaij A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renewable and Sustainable Energy Reviews 2018;81:1049–86. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.