Open Access
E3S Web Conf.
Volume 355, 2022
2022 Research, Invention, and Innovation Congress (RI²C 2022)
Article Number 01001
Number of page(s) 7
Section Energy Technology
Published online 12 August 2022
  1. N. Singh, R.R. Singhania, P.S. Nigam, C.D. Dong, A.K. Patel, M. Puri, Global status of lignocellulosic biorefinery: Challenges and perspectives, Bioresource Technology, 344 (2022):126415. [CrossRef] [PubMed] [Google Scholar]
  2. N. Raina, P.S. Slathia, P. Sharma, Experimental optimization of thermochemical pretreatment of sal (Shorea robusta) sawdust by Central Composite Design study for bioethanol production by co-fermentation using Saccharomyces cerevisiae (MTCC-36) and Pichia stipitis (NCIM-3498), Biomass and Bioenergy, 143(2020): 105819. [CrossRef] [Google Scholar]
  3. N. Raina, P.S. Slathia, P. Sharma, Response surface methodology (RSM) for optimization of thermochemical pretreatment method and enzymatic hydrolysis of deodar sawdust (DS) for bioethanol production using separate hydrolysis and co-fermentation (SHCF), Biomass Conversion and Biorefinery (2020): 1-21. [Google Scholar]
  4. S. Sachdeva, V.K. Garg, N.K. Labhsetwar, Anita Singh, K.N. Yogalakshmi, Zero Waste Biorefinery: A Comprehensive Outlook, In Zero Waste Biorefinery, Springer, Singapore (2022):3-22. [CrossRef] [Google Scholar]
  5. P. Jusakulvijit, A. Bezama D. Thrän, The Availability and Assessment of Potential Agricultural Residues for the Regional Development of Second-Generation Bioethanol in Thailand, Waste and Biomass Valorization 12(11) (2021):6091-6118. [CrossRef] [Google Scholar]
  6. M. Hidayat, N.A. Aqilah, Adi Winata, Pretreatment of Oil Palm Empty Fruit Bunch Using Caustic Soda Solution for Lignin Isolation, Journal of Applied Science and Engineering, 25(6) (2022):1025-1030. [Google Scholar]
  7. W. Rodiahwati, M. Sriariyanun, Lignocellulosic Biomass to Biofuel Production: Integration of Chemical and Extrusion (Screw Press) Pretreatment, King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology, 9(4) (2016):289-298. [Google Scholar]
  8. M.P. Gundupalli, M. Sriariyanun, Recent Trends and Updates for Chemical Pretreatment of Lignocellulosic Biomass, Applied Science and Engineering Progress 16(1) (2023):5842. [Google Scholar]
  9. M. Raud, K. Orupõld, L. Rocha-Meneses, V. Rooni, O. Träss and T. Kikas, Biomass Pretreatment with the Szego Mill™ for Bioethanol and Biogas Production. Processes, 8(10) (2020):1327. [Google Scholar]
  10. H. Chandel, P. Kumar, A.K. Chandel, M.L. Verma, Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention, Biomass Conversion and Biorefinery (2022):1-23. [Google Scholar]
  11. J. Park, B. Jones, B. Koo, X. Chen, M. Tucker, J.H. Yu, T. Pschorn, R. Venditti, S. Park, Use of mechanical refining to improve the production of low-cost sugars from lignocellulosic biomass. Bioresource technology, 199 (2016):59-67. [CrossRef] [PubMed] [Google Scholar]
  12. A. Devi, A. Singh, S. Bajar, D. Pant, Z.U. Din, Ethanol from lignocellulosic biomass: An in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes, Journal of Environmental Chemical Engineering, 9(5) (2021):105798. [CrossRef] [Google Scholar]
  13. B. Kumar, N. Bhardwaj, K. Agrawal, V. Chaturvedi, P. Verma, Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 199 (2020):106244. [CrossRef] [Google Scholar]
  14. Amisha Patel, Amita R. Shah. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products, Journal of Bioresources and Bioproducts, 6(2) (2021): 108-128. [CrossRef] [Google Scholar]
  15. S. Rezania, B. Oryani, J. Cho, A. Talaiekhozani, F. Sabbagh, B. Hashemi, P.F. Rupani, A.A. Mohammadi, Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview, Energy, 199 (2020):117457. [CrossRef] [Google Scholar]
  16. A. Satlewal, R. Agrawal, S. Bhagia, J. Sangoro, A.J. Ragauskas, Natutal deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities, Biotechnology advances, 36(8) (2018):2032-2050. [CrossRef] [PubMed] [Google Scholar]
  17. F. Wirawan, C.L. Cheng, Y.C. Lo, C.Y. Chen, J.S. Chang, S.Y. Leu, D.J. Lee, Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process, Applied Energy, 266 (2020):114871. [CrossRef] [Google Scholar]
  18. H.P. Vu, L.N. Nguyen, M.T. Vu, M.A.H. Johir, R. McLaughlan, L.D. Nghiem, A comprehensive review on the framework to valorize lignocellulosic biomass as biorefinery feedstocks, Science of the Total Environment, 743 (2020):140630. [CrossRef] [Google Scholar]
  19. R. Alayoubi, N. Mehmood, E. Husson, A. Kouzayha, M. Tabcheh, L. Chaveriat, C.Sarazin, I. Gosselin, Low temperature ionic liquid pretreatment, of lignocellulosic biomass to enhance bioethanol yield, Renewable Energy, 145 (2020):1808-1816. [Google Scholar]
  20. GHD. Biofuels and transport: an Australian opportunity: Australian Renewable Energy Agency and Clean Energy Finance Corporation 2019. [Google Scholar]
  21. S.S.Hassan, G.A. Williams, A.K. Jaiswal, Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities, Renewable and Sustainable Energy Reviews, 101 (2019): 590. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.