Open Access
Issue
E3S Web Conf.
Volume 355, 2022
2022 Research, Invention, and Innovation Congress (RI²C 2022)
Article Number 02003
Number of page(s) 9
Section Environmental Science and Engineering
DOI https://doi.org/10.1051/e3sconf/202235502003
Published online 12 August 2022
  1. W.J. Oswald, The high-rate pond in waste disposal, Developments in Industrial Microbiology, 4 (1963): 112–119 [Google Scholar]
  2. W.J. Oswald, H.B. Gotaas, C.G. Golueke, W.R. Kellen, E.F. Gloyna, Algae in Waste Treatment, Sewage and Industrial Wastes, 29(4) (1957): 437–457 [Google Scholar]
  3. K. Kumar, S.K. Mishra, A. Shrivastav, M.S. Park, J.W. Yang, Recent trends in the mass cultivation of algae in raceway ponds, Renewable and Sustainable Energy Reviews, 51 (2015): 875–885 [CrossRef] [Google Scholar]
  4. R. Craggs, J. Park, D. Sutherland, S. Heubeck, Economic construction and operation of hectare-scale wastewater treatment enhanced pond systems, Journal of Applied Phycology 27, 5 (2015): 1913–1922 [CrossRef] [Google Scholar]
  5. R.M. Handler, C.E. Canter, T.N. Kalnes, F.S. Lupton, O. Kholiqov, D.R. Shonnard, P. Blowers, Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: Analysis of the prior literature and investigation of wide variance in predicted impacts, Algal Research, 1(1) (2012): 83–92 [CrossRef] [Google Scholar]
  6. S. Dahmani, D. Zerrouki, L. Ramanna, I. Rawat, F. Bux, Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region, Bioresource Technology, 219 (2016): 749–752 [CrossRef] [PubMed] [Google Scholar]
  7. S.P. Singh, P. Singh, Effect of temperature and light on the growth of algae species: A review, Renewable and Sustainable Energy Reviews, 50 (2015): 431–444 [CrossRef] [Google Scholar]
  8. R. Wimalasekera, Effect of Light Intensity on Photosynthesis, Photosynthesis, Productivity, and Environmental Stress, (2019): 65–73 [Google Scholar]
  9. H. Lokstein, G. Renger, J.P. Götze, Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions, Molecules, 26(11) (2021): 3378 [CrossRef] [PubMed] [Google Scholar]
  10. H.G. Koh, N.K. Kang, S. Jeon, S.E. Shin, B.R. Jeong, Y.K. Chang, Heterologous synthesis of chlorophyll b in Nannochloropsis salina enhances growth and lipid production by increasing photosynthetic efficiency, Biotechnology for Biofuels, 12(1) (2019): 1–15 [CrossRef] [PubMed] [Google Scholar]
  11. A. Pavlou, J. Jacques, N. Ahmadova, F. Mamedov, S. Styring, The wavelength of the incident light determines the primary charge separation pathway in Photosystem II, Scientific Reports, 8(1) (2018): 2837 [CrossRef] [PubMed] [Google Scholar]
  12. D. Diaz-MacAdoo, M.T. Mata, C. Riquelme, Influence of Irradiance and Wavelength on the Antioxidant Activity and Carotenoids Accumulation in Muriellopsis sp. Isolated from the Antofagasta Coastal Desert, Molecules, 27(8) (2022): 2412 [CrossRef] [PubMed] [Google Scholar]
  13. S. Baer, M. Heining, P. Schwerna, R. Buchholz, H. Hübner, Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor, Algal Research, 14 (2016): 109–115 [CrossRef] [Google Scholar]
  14. Y. Maltsev, K. Maltseva, M. Kulikovskiy, S. Maltseva, Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition, Biology, 10(10) (2021): 1060 [Google Scholar]
  15. M.N. Metsoviti, G. Papapolymerou, I.T. Karapanagiotidis, N. Katsoulas, Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris, Plants, 9(1) (2019): 31 [CrossRef] [Google Scholar]
  16. A. Difusa, J. Talukdar, M.C. Kalita, K. Mohanty, V. V. Goud, Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species, Biofuels, 6(1-2) (2015): 37–44 [Google Scholar]
  17. D.M. Arias, E. Uggetti, M.J. García-Galán, J. García, Cultivation and selection of cyanobacteria in a closed photobioreactor used for secondary effluent and digestate treatment, Science of The Total Environment, 588 (2017): 157–167 [CrossRef] [Google Scholar]
  18. S.K. Prajapati, P. Kumar, A. Malik, V.K. Vijay, Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: A closed loop bioenergy generation process, Bioresource Technology, 158 (2014): 174–180 [CrossRef] [PubMed] [Google Scholar]
  19. M.R. Tredici, N. Bassi, M. Prussi, N. Biondi, L. Rodolfi, G. Chini Zittelli, G. Sampietro, Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: How to produce algal biomass in a closed reactor achieving a high Net Energy Ratio, Applied Energy, 154 (2015): 1103–1111 [CrossRef] [Google Scholar]
  20. T. Li, L.N. Liu, C.D. Jiang, Y.J. Liu, L. Shi, Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum, Journal of Photochemistry and Photobiology B: Biology, 137 (2014): 31–38 [CrossRef] [Google Scholar]
  21. E. Darko, P. Heydarizadeh, B. Schoefs, M.R. Sabzalian, Photosynthesis under artificial light: the shift in primary and secondary metabolism, Philosophical Transactions of the Royal Society B: Biological Sciences, 369 (1640) (2014): 20130243 [CrossRef] [PubMed] [Google Scholar]
  22. M. Glemser, M. Heining, J. Schmidt, A. Becker, D. Garbe, R. Buchholz, T. Brück, Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives, Applied Microbiology and Biotechnology, 100(3) (2016): 1077–1088 [CrossRef] [PubMed] [Google Scholar]
  23. R. Bouterfas, M. Belkoura, A. Dauta, Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake, Hydrobiologia, 489(1) (2002): 207–217 [CrossRef] [Google Scholar]
  24. T. Yoshioka, Y. Saijo, Photoinhibition and recovery of NH4+-oxidizing bacteria and NO-2-oxidizing bacteria, The Journal of General and Applied Microbiology, 30(3) (1984): 151–166 [CrossRef] [Google Scholar]
  25. C. Vergara, R. Muñoz, J.L. Campos, M. Seeger, D. Jeison, Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment, International Biodeterioration and Biodegradation, 114 (2016): 116–121 [CrossRef] [Google Scholar]
  26. A. Khalili, G.D. Najafpour, G. Amini, F. Samkhaniyani, Influence of nutrients and LED light intensities on biomass production of microalgae Chlorella vulgaris, Biotechnology and Bioprocess Engineering, 20(2) (2015): 284–290 [CrossRef] [Google Scholar]
  27. C.E. Sharp, S. Urschel, X. Dong, A.L. Brady, G.F. Slater, M. Strous, Robust, high-productivity phototrophic carbon capture at high pH and alkalinity using natural microbial communities, Biotechnology for Biofuels, 10(1) (2017): 84 [CrossRef] [PubMed] [Google Scholar]
  28. B. Brzychczyk, T. Hebda, N. Pedryc, The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris, Energies, 13 (22) (2020): 5994 [Google Scholar]
  29. D. Kang, K. Kim, Y. Jang, H. Moon, D. Ju, D. Jahng, Nutrient removal and community structure of wastewater-borne algal-bacterial consortia grown in raw wastewater with various wavelengths of light, International Biodeterioration & Biodegradation, 126 (2018): 10–20 [CrossRef] [Google Scholar]
  30. D. Kang, K.T. Kim, T.Y. Heo, G. Kwon, C. Lim, J. Park, Inhibition of Photosynthetic Activity in Wastewater-Borne Microalgal–Bacterial Consortia under Various Light Conditions, Sustainability, 11(10) (2019): 2951 [CrossRef] [Google Scholar]
  31. G. Tchobanoglous, F.L. Burton, H.D. Stensel, Wastewater Engineering: Treatment and Reuse. Metcalf & Eddy/Aecom (2014) [Google Scholar]
  32. S.M. Phang, O. Kim-Chong, Algal biomass production in digested palm oil mill effluent, Biological Wastes, 25(3) (1988): 177–191 [CrossRef] [Google Scholar]
  33. L. Xin, H. Hong-ying, G. Ke, S. Ying-xue, Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp., Bioresource Technology, 101 (14) (2010): 5494–5500 [CrossRef] [PubMed] [Google Scholar]
  34. H.J. Choi, S.M. Lee, Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater, Bioprocess and Biosystems Engineering, 38(4) (2015): 761–766 [CrossRef] [PubMed] [Google Scholar]
  35. APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, Standard Methods, (2012): 541 [Google Scholar]
  36. T. de Mooij, G. de Vries, C. Latsos, R.H. Wijffels, M. Janssen, Impact of light color on photobioreactor productivity, Algal Research, 15 (2016): 32–42 [CrossRef] [Google Scholar]
  37. T.H. Kim, Y. Lee, S.H. Han, S.J. Hwang, The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment, Bioresource Technology, 130 (2013): 75–80 [CrossRef] [Google Scholar]
  38. P.S.C. Schulze, H.G.C. Pereira, T.F.C. Santos, L. Schueler, R. Guerra, L.A. Barreira, J.A. Perales, J.C.S. Varela, Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii, Algal Research, 16 (2016): 387–398 [CrossRef] [Google Scholar]
  39. C.Y. Chen, K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review, Bioresource Technology, 102(1) (2011): 71–81 [CrossRef] [Google Scholar]
  40. A. Abeliovich, D. Weisman, Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high-rate oxidation ponds, Applied and Environmental Microbiology, 35(1) (1978): 32–37 [CrossRef] [PubMed] [Google Scholar]
  41. A.W. Mayo, T. Noike, Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture, Water Research, 28(5) (1994): 1001–1008 [CrossRef] [Google Scholar]
  42. D. Vandamme, I. Foubert, I. Fraeye, K. Muylaert, Influence of organic matter generated by chlorella vulgaris on five different modes of flocculation, Bioresource Technology, 124 (2012): 508–511 [CrossRef] [PubMed] [Google Scholar]
  43. S. Babel, S. Takizawa, H. Ozaki, Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae, Water Research, 36(5) (2002): 1193–1202 [CrossRef] [PubMed] [Google Scholar]
  44. L.O. Villacorte, Y. Ekowati, T.R. Neu, J.M. Kleijn, H. Winters, G. Amy, J.C. Schippers, M.D. Kennedy, Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae, Water Research, 73 (2015): 216–230 [CrossRef] [PubMed] [Google Scholar]
  45. A.M. Silva-Benavides, G. Torzillo, Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures, Journal of Applied Phycology, 24(2) (2012): 267–276 [CrossRef] [Google Scholar]
  46. C. Yan, Y. Zhao, Z. Zheng, X. Luo, Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris, Biodegradation, 24(5) (2013): 721–732 [CrossRef] [PubMed] [Google Scholar]
  47. L. Wang, M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, R. Ruan, Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant, Applied Biochemistry and Biotechnology, 162(4) (2010): 1174–1186 [Google Scholar]
  48. X. Johnson, J. Alric, Central carbon metabolism and electron transport in chlamydomonas reinhardtii: Metabolic constraints for carbon partitioning between oil and starch, Eukaryotic Cell, 12(6) (2013): 776–793 [Google Scholar]
  49. H.C. Huppe, D.H. Turpin, Integration of Carbon and Nitrogen Metabolism in Plant and Algal Cells, Annual Review of Plant Physiology and Plant Molecular Biology, 45(1) (1994): 577–607 [CrossRef] [Google Scholar]
  50. N. Liu, F. Li, F. Ge, N. Tao, Q. Zhou, M. Wong, Mechanisms of ammonium assimilation by Chlorella vulgaris F1068: Isotope fractionation and proteomic approaches, Bioresource Technology, 190 (2015): 307–314 [CrossRef] [PubMed] [Google Scholar]
  51. A. Beuckels, E. Smolders, K. Muylaert, Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment, Water Research, 77 (2015): 98–106 [CrossRef] [PubMed] [Google Scholar]
  52. P.L. Gupta, H.J. Choi, S.M. Lee, Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol, Environmental Science and Pollution Research, 23(10) (2016): 10114–10123 [CrossRef] [PubMed] [Google Scholar]
  53. F.P. Healey, Inorganic nutrient uptake and deficiency in algae, Critical Reviews in Microbiology, 3(1) (1973): 69–113 [CrossRef] [PubMed] [Google Scholar]
  54. J. Yang, Y. Gou, F. Fang, J. Guo, H. Ma, X. Wei, B. Shahmoradi, Impacts of sludge retention time on the performance of an algal-bacterial bioreactor, Chemical Engineering Journal, 343 (2018): 37–43 [CrossRef] [Google Scholar]
  55. Y. Sun, Z. Chen, G. Wu, Q. Wu, F. Zhang, Z. Niu, H.Y. Hu, Characteristics of water quality of municipal wastewater treatment plants in China: implications for resources utilization and management, Journal of Cleaner Production, 131 (2016): 1–9 [CrossRef] [Google Scholar]
  56. H. Al-Jabri, P. Das, S. Khan, M. Thaher, M. Abdulquadir, Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass—A Review, Water 2021, 13(1)(2020): 27 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.