Open Access
Issue |
E3S Web Conf.
Volume 355, 2022
2022 Research, Invention, and Innovation Congress (RI²C 2022)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 8 | |
Section | Environmental Science and Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202235502013 | |
Published online | 12 August 2022 |
- S. Severin, W.S. Xia, Enzymatic hydrolysis of whey proteins by two different proteases and their effect on the functional properties of resulting protein hydrolysates, Journal of Food Biochemistry, 30(1) (2006): 77-97 [Google Scholar]
- T. Julmanlik, S. Kongruang, Functional properties and applications of egg white protein hydrolysates, Journal of Food Technology of Siam University, 14(1) (2019): 69-87 [Google Scholar]
- K.M.I. Bashir, J.H. Sohn, J.S. Kim, J.S. Choi, Identification and characterization of novel antioxidant peptides from mackerel (Scomber japonicus) muscle protein hydrolysates, Food Chemistry, 323 (2020): 126809 [PubMed] [Google Scholar]
- P. Ambigaipalan, F. Shahidi, Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities, Journal of Functional Foods, 34 (2017): 7-17 [Google Scholar]
- X. Guo, X. Sun, Y. Zhang, R. Wang, X. Yan, Interactions between soy protein hydrolyzates and wheat proteins in noodle making dough, Food Chemistry, 245 (2018): 500-507 [CrossRef] [PubMed] [Google Scholar]
- N. Ktari, R.B.S.B. Salem, I. Bkhairia, S.B. Slima, R. Nasri, R.B. Salah, M. Nasri, Functional properties and biological activities of peptides from zebra blenny protein hydrolysates fractionated using ultrafiltration, Food Bioscience, 34 (2020): 100539 [Google Scholar]
- S. Silaprueng, B. Thumthanaruk, P. Wongsa-ngasri, Comparative functional properties of jellyfish (Lobonema smithii) protein hydrolysate as influenced by bromelain and hydrochloric acid, Journal of Food Science and Agricultural Technology, 1 (2015): 171-176 [Google Scholar]
- G. Guillén, M.E. López Caballero, A. Alemán, A.L.D. Lacey, B. Giménez, P. Montero García, in Sea by-Products as Real Material: New Ways of Application, edited by E.L. Bihan (Transworld Research Network, Trivandrum, (2010): 89-115 [Google Scholar]
- Z. Barzideh, A.A. Latiff, C.Y. Gan, M. Abedin, A.K. Alias, ACE inhibitory and antioxidant activities of collagen hydrolysates from the ribbon jellyfish (Chrysaora sp.). Food Technology and Biotechnology, 52(4) (2014): 495-504 [PubMed] [Google Scholar]
- H. Korhonen, A. Pihlanto, Bioactive peptides: production and functionality, International Dairy Journal, 16(9) (2006): 945-960 [Google Scholar]
- K. Fields, T.J. Falla, K. Rodan, L. Bush, Bioactive peptides: signaling the future, Journal of Cosmetic Dermatology, 8(1) (2009): 8-13 [PubMed] [Google Scholar]
- E. Maestri, M. Marmiroli, N. Marmiroli, Bioactive peptides in plant-derived foodstuffs, Journal of Proteomics, 147 (2016): 140-155 [PubMed] [Google Scholar]
- H.M. Rawel, G. Huschek, S.T. Sagu, T. Homann, Cocoa bean proteins-characterization, changes and modifications due to ripening and post-harvest processing, Nutrients, 11(2) (2019): 428 [Google Scholar]
- Y.L. Zhuang, X. Zhao, B.F. Li, Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen, Journal of Zhejiang University Science B, 10(8) (2009): 572-579 [PubMed] [Google Scholar]
- B. Li, F. Chen, X. Wang, B. Ji, Y. Wu, Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry, Food Chemistry, 102(4) (2007): 1135-1143 [Google Scholar]
- L.A. Domínguez-Pérez, L.M. Beltrán-Barrientos, A.F. González-Córdova, A. Hernández-Mendoza, B. Vallejo-Cordoba, Artisanal cocoa bean fermentation: From cocoa bean proteins to bioactive peptides with potential health benefits, Journal of Functional Foods, 73 (2020): 104134 [Google Scholar]
- J. Sealey-Voyksner, J. Zweigenbaum, R. Voyksner, Discovery of highly conserved unique peanut and tree nut peptides by LC–MS/MS for multi-allergen detection, Food Chemistry, 194 (2016): 201-211 [PubMed] [Google Scholar]
- F. Tonolo, A. Folda, L. Cesaro, V. Scalcon, O. Marin, S. Ferro, A. Bindoli, M.P. Rigobello, Milk- derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway, Journal of Functional Foods, 64 (2020): 103696 [CrossRef] [Google Scholar]
- M. Amorim, J.O. Pereira, L.B. Silva, R.C.S.C. Ormenese, M.T.B. Pacheco, M. Pintado, M., Use of whey peptide fraction in coated cashew nut as functional ingredient and salt replacer, Lebensmittel-Wissenschaft & Technologie, 92 (2018): 204-211 [CrossRef] [Google Scholar]
- C. Zhao, T.J. Ashaolu, Bioactivity and safety of whey peptides, Lebensmittel-Wissenschaft & Technologie, 134 (2020): 109935 [Google Scholar]
- J. Zheng, T. Bu, L. Liu, G. He, S. Li, J. Wu, Naturally occurring low molecular peptides identified in egg white show antioxidant activity, Food Research International, 138 (2020): 109766 [Google Scholar]
- S. Moreno-Fernández, M. Garcés-Rimón, M. Miguel, Egg-derived peptides and hydrolysates: a new bioactive treasure for cardiometabolic diseases, Trends in Food Science & Technology, 104 (2020): 208-218 [Google Scholar]
- L. Mora, M. Reig, F. Toldrá, Bioactive peptides generated from meat industry by-products, Food Research International, 65 (2014): 344-349 [Google Scholar]
- T. Sayd, C. Dufour, C. Chambon, C. Buffière, D. Remond, V. Sante-Lhoutellier, Combined in vivo and in silico approaches for predicting the release of bioactive peptides from meat digestion, Food Chemistry, 249 (2018): 111-118 [PubMed] [Google Scholar]
- S. Martini, A. Conte, D. Tagliazucchi, Comparative peptidomic profile and bioactivities of cooked beef, pork, chicken and turkey meat after In vitro gastro-intestinal digestion, Journal of Proteomics, 208 (2019): 1-10 [Google Scholar]
- P. Khositanon, N. Panya, S. Roytrakul, S. Krobthong, S. Chanroj, W. Choksawangkarn, Effects of fermentation periods on antioxidant and angiotensin I-converting enzyme inhibitory activities of peptides from fish sauce by-products, Lebensmittel-Wissenschaft & Technologie, 135 (2021): 110122 [Google Scholar]
- A. Cerrato, A.L. Capriotti, F. Capuano, C. Cavaliere, A.M.I. Montone, C.M. Montone, S. Piovesana, Z. Chiozzi, A. Laganà, Identification and antimicrobial activity of medium-sized and short peptides from yellowfin tuna (Thunnus albacares) simulated gastrointestinal digestion, Foods, 9 (2020): 1-12 [Google Scholar]
- Y. Geng, K. Tan, L. Liu, X.X. Sun, B. Zhao, J. Wang, Development and evaluation of a rapid and sensitive RPA assay for specific detection of Vibrio parahaemolyticus in seafood, BMC Microbiology, 19(1) (2019): 1-9 [CrossRef] [PubMed] [Google Scholar]
- Q. Fan, Y. Yuan, T. Zhang, W. Song, Q. Sheng, T. Yue, Inhibitory effects of lactobionic acid on Vibrio [Google Scholar]
- K.O. Lima, C.D.C.D. Quadros, M.D. Rocha, J.T.J.G.D. Lacerda, M.A. Juliano, M. Dias, M.A. Mendes, C. Prentice, Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of Stripped weakfish (Cynoscion guatucupa), Lebensmittel-Wissenschaft & Technologie, 111 (2019): 408-413 [Google Scholar]
- Y.H.P. Hsieh, F.M. Leong, J. Rudloe, Jellyfish as food, Hydrobiologia, 451 (2001): 11-17 [Google Scholar]
- M.T. Pedersen, J.R. Brewer, L. Duelund, P.L. Hansen, On the gastrophysics of jellyfish preparation, International Journal of Gastronomy and Food Science, 9 (2017): 34-38 [CrossRef] [Google Scholar]
- P. Muangrod, V. Rungsardthong, S. Vatanyoopaisarn, Y. Tamaki, E. Kuraya, B. Thumthanaruk, Effect of wash cycle on physical and chemical properties of rehydrated jellyfish by-products and jellyfish protein powder, Science, Engineering and Health Studies, 15 (2021): 21030004-21030004 [Google Scholar]
- W. Charoenchokpanich, V. Rungsardthong, S. Vatanyoopaisarn, B. Thumthanaruk, Y. Tamaki, Salt reduction in salted jellyfish (Lobonema smithii) using a mechanical washing machine, Science, Engineering and Health Studies, 14 (2020): 184-192 [Google Scholar]
- P. Muangrod, W. Charoenchokpanich, V. Rungsardthong, S. Vatanyoopaisarn, B. Wonganu, S. Roytrakul, B. Thumthanaruk, Effect of pepsin hydrolysis on antioxidant activity of jellyfish protein hydrolysate, E3S Web of Conferences, 302 (2021): 02010 [CrossRef] [EDP Sciences] [Google Scholar]
- C.F. Chi, F.Y. Hu, B. Wang, X.J. Ren, S.G. Deng, C.W. Wu, Purification and characterization of three antioxidant peptides from protein hydrolyzate of croceine croaker (Pseudosciaena crocea) muscle, Food Chemistry, 168 (2015): 662-667 [PubMed] [Google Scholar]
- AOAC, Official Methods of Analysis of AOAC International, AOAC International, USA (2000) [Google Scholar]
- C.S. James, Analytical Chemistry of Foods, Springer, London (1995) [Google Scholar]
- O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent, Journal of Biological Chemistry, 193 (1951): 265-275 [Google Scholar]
- S. Sathivel, P.J. Bechtel, J. Babbitt, S. Smiley, C. Crapo, K.D. Reppond, W. Prinyawiwatkul, Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates. Journal of Food Science, 68(7) (2003): 2196-2200 [CrossRef] [Google Scholar]
- P. Molyneux, The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity, Songklanakarin Journal of Science and Technology, 26 (2004): 211–219 bitter beans (Parkia speciosa) via boiling and fermentation processes, Lebensmittel-Wissenschaft & Technologie, 131 (2020): 109776 [Google Scholar]
- B.J. Muhialdin, N.F.A. Rani, A.S.M. Hussin, Identification of antioxidant and antibacterial activities for the bioactive peptides generated from parahaemolyticus planktonic cells and biofilms, Food Microbiology, 103 (2022): 103963 [CrossRef] [PubMed] [Google Scholar]
- U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227 (5259) (1970): 680-685 [CrossRef] [PubMed] [Google Scholar]
- I. Batish, D. Brits, P. Valencia, C. Miyai, S. Rafeeq, Y. Xu, M. Galanopoulos, E. Sismour, R. Ovissipour, Effects of enzymatic hydrolysis on the functional properties, antioxidant activity and protein structure of black soldier fly (Hermetia illucens) protein, Insects, 11(876) (2020): 1-12 [Google Scholar]
- K. Shimada, K. Fujikawa, K. Yahara, T. Nakamura, Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion, Journal of Agricultural and Food Chemistry, 40(6) (1992): 945-948 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.