Open Access
Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 5 | |
Section | Air Distribution and Ventilation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202235601005 | |
Published online | 31 August 2022 |
- X. Yang, H. Li, S. Svendsen. Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures[J]. Energy, 110(sep.1):65-74(2016) [Google Scholar]
- Z. Song, N. Wang, S. You, et al. Integration of geothermal water into secondary network by absorption-heat-pump-assisted district heating substations[J]. Energy Build, 202(Nov.):109403.1-109403.11(2019) [Google Scholar]
- S. Buffa, M. Cozzini, M. D'Antoni, et al. 5th generation district heating and cooling systems: A review of existing cases in Europe[J]. Renew. Sust. Energ. Rev. 104(APR.):504-522(2019) [CrossRef] [Google Scholar]
- E. Wong. An Investigation of The Performance Of District Heating Substations Using Computer Simulation[J](2011) [Google Scholar]
- J F C. Flores. Low-temperature based thermal micro-grids: operation and performance assessments[D]. Ecole nationale supérieure Mines-Télécom Atlantique(2018) [Google Scholar]
- I.del Hoyo Arce, S H.López, S L.Perez, et al. Models for fast modelling of district heating and cooling networks[J]. Renew. Sust. Energ. Rev, 82: 1863-1873(2018) [CrossRef] [Google Scholar]
- B.Di Pietra, F. Zanghirella, G. Puglisi. An evaluation of distributed solar thermal “net metering” in small-scale district heating systems[J]. Energy Procedia, 78: 1859-1864(2015) [CrossRef] [Google Scholar]
- Y H. Im, J. Liu. Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model[J]. Energy, 153: 988-999(2018) [CrossRef] [Google Scholar]
- S. Lim, S. Park, H. Chung, et al. Dynamic modelling of building heat network system using Simulink[J]. Applied Thermal Engineering, 84: 375-389(2015) [CrossRef] [Google Scholar]
- Y. Li. Renovation and optimization of existing district heating networks: towards smart low carbon thermal grids[D]. Cardiff University(2018) [Google Scholar]
- M. Vesterlund, A. Toffolo, J. Dahl. Simulation and analysis of a meshed district heating network[J]. Energy Convers. Manag. 122: 63-73(2016) [CrossRef] [Google Scholar]
- A. Dahash, S. Mieck, F. Ochs, et al. A comparative study of two simulation tools for the technical feasibility in terms of modeling district heating systems: An optimization case study[J]. Simul Model Pract Theory, 91: 48-68(2019) [CrossRef] [Google Scholar]
- M A. Ancona, L. Branchini, A. De Lorenzi, et al. Application of different modeling approaches to a district heating network[C]//AIP Conference Proceedings. AIP Publishing LLC, 2191(1): 020009(2019) [Google Scholar]
- H. Li, S. Svendsen. Energy and exergy analysis of low temperature district heating network[J]. Energy, 45(1):237-246(2012) [CrossRef] [Google Scholar]
- J C. Flores, J N W. Chiua, O. Le Correb, et al. Energetic and exergetic analysis of alternative low-temperature based district heating substation arrangements[J]. Int J Thermophys, 19(2): 71-80(2016) [CrossRef] [Google Scholar]
- D. Beckenbauer, M. Ehrenwirth, M. Klärner, et al. Validation of a District Heating System Model and Simulation-Based Investigation of Bidirectional Heat Transport by Decentralised Solar Thermal Plants[C]. Proceedings of SWC2017/SHC2017, International Solar Energy Society, Freiburg, Germany (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.