Open Access
Issue
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
Article Number 01013
Number of page(s) 5
Section Air Distribution and Ventilation Performance
DOI https://doi.org/10.1051/e3sconf/202235601013
Published online 31 August 2022
  1. Thrampoulidis E, Mavromatidis G, Lucchi A, Orehounig K. A machine learning-based surrogate model to approximate optimal building retrofit solutions. Appl Energy 2021;281:116024. https://doi.org/10.1016/j.apenergy.2020.116024. [CrossRef] [Google Scholar]
  2. Yi J, Shan H. Paths to Carbon neutrality in China’s Building Sector. HV&AC 2021;51(5):1–13. [Google Scholar]
  3. Lohwanitchai K, Jareemit D. Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand. Sustainability 2021;13. [Google Scholar]
  4. Chen X, Yang H. A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios. Appl Energy 2017;206:541–57. https://doi.org/10.1016/j.apenergy.2017.08.204. [CrossRef] [Google Scholar]
  5. Xie N, Zeng J, Qi XU, Zhang C, Zhang W. Overview of AC & DC Hybrid Distributed Renewable Energy System. South Power Syst Technol 2017. [Google Scholar]
  6. Liu CH, Gu JC, Yang MT. A Simplified LSTM Neural Networks for One Day-Ahead Solar Power Forecasting. IEEE Access 2021;9:17174–95. https://doi.org/10.1109/ACCESS.2021.3053638. [CrossRef] [Google Scholar]
  7. Basu AK. Microgrid: Planning of Solar PV Incorporation to the Optimal CHP-System–An Evolutionary Algorithmic Approach. Technol Econ Smart Grids Sustain Energy 2019;4:1–14. https://doi.org/10.1007/s40866-019-0062-4. [Google Scholar]
  8. Jain A, Kumar AM. Hybrid neural network models for hydrologic time series forecasting. Appl Soft Comput J 2007;7:585–92. https://doi.org/10.1016/j.asoc.2006.03.002. [CrossRef] [Google Scholar]
  9. Bourdeau M, Zhai X Qiang, Nefzaoui E, Guo X, Chatellier P. Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustain Cities Soc 2019;48:101533. https://doi.org/10.1016/j.scs.2019.101533. [CrossRef] [Google Scholar]
  10. Zhou X, Liu T, Yan D, Shi X, Jin X. An action-based Markov chain modeling approach for predicting the window operating behavior in office spaces. Build Simul 2021;14:301–15. https://doi.org/10.1007/s12273-020-0647-9. [CrossRef] [Google Scholar]
  11. Zhang X, Lu F, Yan YF. Energy-Saving Reconstruction Research of Old Buildings in Hot Summer and Cold Winter Regions. Adv Mater Res 2013;689:30–4. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.