Open Access
Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 03024 | |
Number of page(s) | 5 | |
Section | Thermal Comfort and Natural Ventilation | |
DOI | https://doi.org/10.1051/e3sconf/202235603024 | |
Published online | 31 August 2022 |
- H. Lund, S. Werner, R. Wiltshire, S. Svendsen, J.E. Thorsen, F. Hvelplund, B.V. Mathiesen, 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems, Energy. 68 (2014) 1–11. [CrossRef] [Google Scholar]
- D.S. Østergaard, S. Svendsen, Replacing critical radiators to increase the potential to use low-temperature district heating – A case study of 4 Danish single-family houses from the 1930s, Energy. 110 (2016) 75–84. https://doi.org/https://doi.org/10.1016/j.energy.2016.03.140. [Google Scholar]
- H. Eijdems, A.C. Boerstra, P.J.M. Op’t Veld, Low temperature heating systems: Impact on iaq, thermal comfort and energy consumption, 2000. [Google Scholar]
- M. Ala-Juusela, Heating and Cooling with Focus on Increased Energy Efficiency and Improved Comfort: Guidebook to IEAAAA ECBCS Annex 37 Low Exergy Systems for Heating and Cooling of Buildings: Summary Report, (2004). [Google Scholar]
- J.M. DeGreef, K.S. Chapman, Simplified thermal comfort evaluation of MRT gradients and power consumption predicted with the BCAP methodology, ASHRAE Trans. 104 (1998) 1090. [Google Scholar]
- P. Mičko, A. Kapjor, M. Holubcik, D. Hečko, Experimental Verification of CFD Simulation When Evaluating the Operative Temperature and Mean Radiation Temperature for Radiator Heating and Floor Heating, Processes. 9 (2021) 1041. [CrossRef] [Google Scholar]
- A. Hasan, J. Kurnitski, K. Jokiranta, A combined low temperature water heating system consisting of radiators and floor heating, Energy Build. 41 (2009) 470–479. https://doi.org/https://doi.org/10.1016/j.enbuild.2008.11.016. [CrossRef] [Google Scholar]
- H. Karabay, M. Arıcı, M. Sandık, A numerical investigation of fluid flow and heat transfer inside a room for floor heating and wall heating systems, Energy Build. 67 (2013) 471-478. https://doi.org/https://doi.org/10.1016/j.enbuild.2013.08.037. [CrossRef] [Google Scholar]
- J.A. Myhren, S. Holmberg, Flow patterns and thermal comfort in a room with panel, floor and wall heating, Energy Build. 40 (2008) 524–536. https://doi.org/https://doi.org/10.1016/j.enbuild.2007.04.011. [CrossRef] [Google Scholar]
- L. Schellen, S. Timmers, M. Loomans, E. Nelissen, J.L.M. Hensen, W. van Marken Lichtenbelt, Downdraught assessment during design: Experimental and numerical evaluation of a rule of thumb, Build. Environ. 57 (2012) 290–301. https://doi.org/https://doi.org/10.1016/j.buildenv.2012.04.011. [CrossRef] [Google Scholar]
- A. Hesaraki, N. Huda, A comparative review on the application of radiant low-temperature heating and high-temperature cooling for energy, thermal comfort, indoor air quality, design and control, Sustain. Energy Technol. Assessments. 49 (2022) 101661. [CrossRef] [Google Scholar]
- A. Koca, G. Çetin, Experimental investigation on the heat transfer coefficients of radiant heating systems: Wall, ceiling and wall-ceiling integration, Energy Build. 148 (2017) 311–326. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.05.027. [CrossRef] [Google Scholar]
- P.O. Fanger, Thermal comfort. Analysis and applications in environmental engineering., Therm. Comf. Anal. Appl. Environ. Eng. (1970). [Google Scholar]
- Z. Tian, L. Yang, X. Wu, Z. Guan, A field study of occupant thermal comfort with radiant ceiling cooling and overhead air distribution system, Energy Build. 223 (2020) 109949. [CrossRef] [Google Scholar]
- C. Karmann, S. Schiavon, F. Bauman, Thermal comfort in buildings using radiant vs. all-air systems: A critical literature review, Build. Environ. 111 (2017) 123–131. https://doi.org/https://doi.org/10.1016/j.buildenv.2016.10.020. [CrossRef] [Google Scholar]
- A. Ploskić, S. Holmberg, Heat emission from thermal skirting boards, Build. Environ. 45 (2010) 1123–1133. [CrossRef] [Google Scholar]
- J.A. Myhren, S. Holmberg, Design considerations with ventilation-radiators: Comparisons to traditional two-panel radiators, Energy Build. 41 (2009) 92–100. [CrossRef] [Google Scholar]
- A. Ploskić, Q. Wang, S. Sadrizadeh, A holistic performance evaluation of ventilation radiators–An assessment according to EN 442-2 using numerical simulations, J. Build. Eng. 25 (2019) 100818. [CrossRef] [Google Scholar]
- A. Hesaraki, E. Bourdakis, A. Ploskić, S. Holmberg, Experimental study of energy performance in low-temperature hydronic heating systems, Energy Build. 109 (2015) 108–114. https://doi.org/https://doi.org/10.1016/j.enbuild.2015.09.064. [CrossRef] [Google Scholar]
- J. Liu, Z. Lin, Energy and exergy performances of floor, ceiling, wall radiator and stratum ventilation heating systems for residential buildings, Energy Build. 220 (2020) 110046. [CrossRef] [Google Scholar]
- T. Ahmad, G. Mahyar, K. Mojtaba, M. Jamshid, Effect of radiator posi-tions on heat distribution in the building using numerical model, Eng. Technol. 58 (2009) 1006–1009. [Google Scholar]
- X. Gong, D.E. Claridge, Impact of the Position of a Radiator to Energy Consumption and Thermal Comfort in a Mixed Radiant and Convective Heating System, (2005). [Google Scholar]
- M. Mirmanto, E.D. Sulistyowati, I.D.K. Okariawan, Effect of radiator position and mass flux on the dryer room heat transfer rate, Results Phys. 6 (2016) 139–144. [CrossRef] [Google Scholar]
- A.J. Robinson, A thermal model for energy loss through walls behind radiators, Energy Build. 127 (2016) 370–381. [CrossRef] [Google Scholar]
- D.J. Harris, Use of metallic foils as radiation barriers to reduce heat losses from buildings, Appl. Energy. 52 (1995) 331–339. [CrossRef] [Google Scholar]
- A. Jahanbin, E. Zanchini, Effects of position and temperature-gradient direction on the performance of a thin plane radiator, Appl. Therm. Eng. 105 (2016) 467–473. [CrossRef] [Google Scholar]
- H. Wolisz, T.M. Kull, R. Streblow, D. Müller, The effect of furniture and floor covering upon dynamic thermal building simulations, Energy Procedia. 78 (2015) 2154–2159. [CrossRef] [Google Scholar]
- K.A. Antonopoulos, E.P. Koronaki, Effect of indoor mass on the time constant and thermal delay of buildings, Int. J. Energy Res. 24 (2000) 391–402. [CrossRef] [Google Scholar]
- H. Johra, P. Heiselberg, J. Le Dréau, Numerical analysis of the impact of thermal inertia from the furniture/indoor content and phase change materials on the building energy flexibility, in: Proc. 15th IBPSA Conf. Int. Build. Perform. Simul. Assoc. San Fr. CA, USA, 2017. [Google Scholar]
- T. Berthou, P. Stabat, R. Salvazet, D. Marchio, Development and validation of a gray box model to predict thermal behavior of occupied office buildings, Energy Build. 74 (2014) 91–100. [Google Scholar]
- J. Zhou, G. Zhang, Y. Lin, H. Wang, A new virtual sphere method for estimating the role of thermal mass in natural ventilated buildings, Energy Build. 43 (2011) 75–81. [CrossRef] [Google Scholar]
- W. Li, P. Xu, H. Wang, X. Lu, A new method for calculating the thermal effects of irregular internal mass in buildings under demand response, Energy Build. 130 (2016) 761–772. [CrossRef] [Google Scholar]
- P. Wallentén, Convective heat transfer coefficients in a full-scale room with and without furniture, Build. Environ. 36 (2001) 743–751. [CrossRef] [Google Scholar]
- K. Horikiri, Y. Yao, J. Yao, Numerical optimisation of thermal comfort improvement for indoor environment with occupants and furniture, Energy Build. 88 (2015) 303–315. https://doi.org/https://doi.org/10.1016/j.enbuild.2014.12.015. [CrossRef] [Google Scholar]
- L. Fontana, Thermal performance of radiant heating floors in furnished enclosed spaces, Appl. Therm. Eng. 31 (2011) 1547–1555. [CrossRef] [Google Scholar]
- P. Peng, G. Gong, X. Deng, C. Liang, W. Li, Field study and numerical investigation on heating performance of air carrying energy radiant air-conditioning system in an office, Energy Build. 209 (2020) 109712. [CrossRef] [Google Scholar]
- H.O. Nilsson, Thermal comfort evaluation with virtual manikin methods, Build. Environ. 42 (2007) 4000–4005. https://doi.org/https://doi.org/10.1016/j.buildenv.2006.04.027. [CrossRef] [Google Scholar]
- G.A. Ganesh, S.L. Sinha, T.N. Verma, Numerical simulation for optimization of the indoor environment of an occupied office building using double-panel and ventilation radiator, J. Build. Eng. 29 (2020) 101139. [CrossRef] [Google Scholar]
- L. Fang, G. Clausen, P.O. Fanger, Impact of temperature and humidity on perception of indoor air quality during immediate and longer whole-body exposures, Indoor Air. 8 (1998) 276–284. [CrossRef] [Google Scholar]
- B.W. Olesen, Radiant floor heating in theory and practice, ASHRAE J. 44 (2002) 19–26. [Google Scholar]
- D. Aviv, K.W. Chen, E. Teitelbaum, D. Sheppard, J. Pantelic, A. Rysanek, F. Meggers, A fresh (air) look at ventilation for COVID-19: Estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies, Appl. Energy. 292 (2021) 116848. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.116848. [CrossRef] [Google Scholar]
- V. Golkarfard, P. Talebizadeh, Numerical comparison of airborne particles deposition and dispersion in radiator and floor heating systems, Adv. Powder Technol. 25 (2014) 389–397. [CrossRef] [Google Scholar]
- M.H. Dehghan, M. Abdolzadeh, Comparison study on air flow and particle dispersion in a typical room with floor, skirt boarding, and radiator heating systems, Build. Environ. 133 (2018) 161–177. [CrossRef] [Google Scholar]
- D.H. Kang, D.H. Choi, Y.-B. Seong, M.S. Yeo, K.W. Kim, A numerical simulation of VOC emission and sorption behaviors of adhesive-bonded materials under floor heating condition, Build. Environ. 68 (2013) 193–201. [CrossRef] [Google Scholar]
- J.-Y. An, S. Kim, H.-J. Kim, J. Seo, Emission behavior of formaldehyde and TVOC from engineered flooring in under heating and air circulation systems, Build. Environ. 45 (2010) 1826–1833. [CrossRef] [Google Scholar]
- D.H. Kang, D.H. Choi, S.M. Lee, M.S. Yeo, K.W. Kim, Effect of bake-out on reducing VOC emissions and concentrations in a residential housing unit with a radiant floor heating system, Build. Environ. 45 (2010) 1816–1825. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.