Open Access
Issue
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
Article Number 04018
Number of page(s) 4
Section Airflow Visualization, Measurement and Simulation
DOI https://doi.org/10.1051/e3sconf/202235604018
Published online 31 August 2022
  1. Schoen, L., Hodgson, M., McCoy, W., Miller, S., Li, Y., Olmsted, R. and Sekhar, C. (2009). Ashrae position document on airborne infectious diseases. ASHRAE: Atlanta, GA, USA. [Google Scholar]
  2. Samuel, A.A. and Strachan, P. (2006). An integrated approach to indoor contaminant modeling. Hvac&R Res 12: 599-619. [CrossRef] [Google Scholar]
  3. Chan, J.F., Yuan, S., Kok, K.H., To, K.K., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C.C., Poon, R.W., Tsoi, H.W., Lo, S.K., Chan, K.H., Poon, V.K., Chan, W.M., Ip, J.D., Cai, J.P., Cheng, V.C., Chen, H., Hui, C.K. and Yuen, K.Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 395: 514-523. [Google Scholar]
  4. Azimi, P., Keshavarz, Z., Laurent, J.G.C., Stephens, B.R. and Allen, J.G. (2020). Mechanistic transmission modeling of covid-19 on the diamond princess cruise ship demonstrates the importance of aerosol transmission. medRxiv. [Google Scholar]
  5. Sun, S.X., Liu, S., Chen, M.X. and Guo, H.B. (2020). An optimized sensing arrangement in wind field reconstruction using CFD and POD. IEEE T Sustain Energ 11: 2449-2456. [CrossRef] [Google Scholar]
  6. Vernay, D.G., Raphael, B. and Smith, I.F.C. (2015). A model-based data-interpretation framework for improving wind predictions around buildings. Journal of Wind Engineering and Industrial Aerodynamics 145: 219-228. [Google Scholar]
  7. Brastein, O.M., Ghaderi, A., Pfeiffer, C.F. and Skeie, N.O. (2020). Analysing uncertainty in parameter estimation and prediction for grey-box building thermal behaviour models. Energy and Buildings 224. [Google Scholar]
  8. Li, X. and Xue, F. (2018). Bayesian inversion of inflow direction and speed in urban dispersion simulations. Build Environ 144: 555-564. [Google Scholar]
  9. Xue, F., Li, X.F., Ooka, R., Kikumoto, H. and Zhang, W.R. (2017a). Turbulent Schmidt number for source term estimation using Bayesian inference. Build Environ 125: 414-422. [Google Scholar]
  10. Xue, F., Li, X.F. and Zhang, W.R. (2017b). Bayesian identification of a single tracer source in an urban-like environment using a deterministic approach. Atmos Environ 164: 128-138. [Google Scholar]
  11. Hutchinson, M., Oh, H. and Chen, W.-H. (2017). A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors. Information Fusion 36: 130-148. [Google Scholar]
  12. Zhuang, J.Y., Li, F., Liu, X.R., Cai, H., Feng, L.H., Li, X.T. (2021). An experiment-based impulse response method to characterize airborne pollutant sources in a scaled multi-zone building. Atmos Environ 251(4):118272. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.