Open Access
E3S Web Conf.
Volume 358, 2022
5th International Conference on Green Energy and Sustainable Development (GESD 2022)
Article Number 01015
Number of page(s) 6
Section Invited Contributions
Published online 27 October 2022
  1. Jente Broeckx, Matthias Vanmaercke, Rica Duchateau, et al. A data-based landslide susceptibility map of Africa[J]. Earth-Science Reviews, 2018, 185: 102–121. [CrossRef] [Google Scholar]
  2. Langping Li, Hengxing Lan, Changbao Guo, et al. A modified frequency ratio method for landslide susceptibility assessment[J]. Landslides, 2017, 14(2): 727–741. [CrossRef] [Google Scholar]
  3. Faming Huang, Jianbo Yang, Biao Zhang, et al. Regional Terrain Complexity Assessment Based on Principal Component Analysis and Geographic Information System: A Case of Jiangxi Province, China[J]. ISPRS International Journal of GeoInformation, 2020, 9(9): 539. [CrossRef] [Google Scholar]
  4. Bernhard Rabus, Manuele Pichierri. A new InSAR phase demodulation technique developed for a typical example of a complex, multi-lobed landslide displacement field, Fels Glacier Slide, Alaska[J]. Remote Sensing, 2018, 10(7): 995. [CrossRef] [Google Scholar]
  5. Tao Hu, Xin Fan, Shuo Wang, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Bulletin, 2020, 39(2): 113–121. [Google Scholar]
  6. Wu Huayong, Dong Yue, Gao Lei, et al. Identifying nitrate sources in surface water, regolith and groundwater in a subtropical red soil Critical Zone by using dual nitrate isotopes[J]. CATENA, 2020, (prepublish) [PubMed] [Google Scholar]
  7. Lei Liu, K.L. Yin, J.J. Wang, et al. Dynamic evaluation of regional landslide hazard due to rainfall: a case study in Wanzhou central district, Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 558–569. [Google Scholar]
  8. Guruh Samodra, Guangqi Chen, Junun Sartohadi, et al. Comparing data-driven landslide susceptibility models based on participatory landslide inventory mapping in Purwosari area, Yogyakarta, Java[J]. Environmental Earth Sciences, 2017, 76(4): 1–19. [CrossRef] [Google Scholar]
  9. Zz Guo, Kl Yin, Fm Huang, et al. Landslide displacement prediction based on surface monitoring data and nonlinear time series combination model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3392–3399. [Google Scholar]
  10. Badal Pokharel, Massimiliano Alvioli, Samsung Lim. Assessment of earthquake-induced landslide inventories and susceptibility maps using slope unitbased logistic regression and geospatial statistics[J]. Scientific reports, 2021, 11(1): 1–15. [CrossRef] [PubMed] [Google Scholar]
  11. Xinzhi Zhou, Haijia Wen, Yalan Zhang, et al. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization[J]. Geoscience Frontiers, 2021, 12(5): 101211. [CrossRef] [Google Scholar]
  12. Faming Huang, Siyu Tao, Zhilu Chang, et al. Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments[J]. Landslides, 2021, 18(11): 3715–3731. [CrossRef] [Google Scholar]
  13. Recep Can, Sultan Kocaman, Candan Gokceoglu. A comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk dam, Turkey[J]. Applied Sciences, 2021, 11(11): 4993. [CrossRef] [Google Scholar]
  14. Faming Huang, Jun Yan, Xuanmei Fan, et al. Uncertainty pattern in landslide susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions[J]. Geoscience Frontiers, 2022, 13(2): 101317. [CrossRef] [Google Scholar]
  15. Gwo-Fong Lin, Ming-Jui Chang, Ya-Chiao Huang, et al. Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression[J]. Engineering Geology, 2017, 224: 6274. [Google Scholar]
  16. Faming Huang, Jinfeng Li, Junyu Wang, et al. Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models[J]. Geological Science and Technology Bulletin, 2022, 41(2): 44–59. [Google Scholar]
  17. Zizheng Guo, Yu Shi, Faming Huang, et al. Landslide susceptibility zonation method based on C5 0 decision tree and K-means cluster algorithms to improve the efficiency of risk management[J]. Geoscience Frontiers, 2021, 12(6): 101249. [CrossRef] [Google Scholar]
  18. Rui Liu, Luyao Li, Saied Pirasteh, et al. The performance quality of L.R., SVM, and RF for earthquake-induced landslides susceptibility mapping incorporating remote sensing imagery[J]. Arabian Journal of Geosciences, 2021, 14(4): 1–15. [CrossRef] [Google Scholar]
  19. Paraskevas Tsangaratos, Andreas Benardos. Estimating landslide susceptibility through a artificial neural network classifier[J]. Natural hazards, 2014, 74(3): 1489–1516. [CrossRef] [Google Scholar]
  20. Xiaojing Wang, Faming Huang, Xuanmei Fan, et al. Landslide susceptibility modeling based on remote sensing data and data mining techniques[J]. Environmental Earth Sciences, 2022, 81(2): 1–19. [CrossRef] [PubMed] [Google Scholar]
  21. Qiong Wu, Huiming Tang, Xiaohan Ma, et al. Identification of movement characteristics and causal factors of the Shuping landslide based on monitored displacements[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(3): 2093–2106. [CrossRef] [Google Scholar]
  22. Alireza Arabameri, Biswajeet Pradhan, Khalil Rezaei, et al. Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR - RF integrated model and multiresolution DEMs[J]. Remote Sensing, 2019, 11(9): 999. [CrossRef] [Google Scholar]
  23. Zengzhen Qian, Mingqiang Sheng, Faming Huang, et al. Uplift Performance of Plate Anchors in Cement- stabilised Aeolian Sand[J]. Frontiers in Earth Science, 2021, 9: 1100. [Google Scholar]
  24. Yijing Li, Ping Liu, Huokun Li, et al. A comparison method for 3D laser point clouds in displacement change detection for arch dams[J]. ISPRS International Journal of Geo-Information, 2021, 10(3): 184. [CrossRef] [Google Scholar]
  25. Faming Huang, Lihan Pan, Xuanmei Fan, et al. The uncertainty of landslide susceptibility prediction modeling: suitability of linear conditioning factors[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 1–19. [CrossRef] [Google Scholar]
  26. Burak F. Tanyu, Aiyoub Abbaspour, Yashar Alimohammadlou, et al. Landslide susceptibility analyses using Random Forest, C4 5, and C5 0 with balanced and unbalanced datasets[J]. Catena, 2021, 203: 105355. [CrossRef] [Google Scholar]
  27. Faming Huang, Kunlong Yin, Jinsong Huang, et al. Landslide susceptibility mapping based on selforganizing-map network and extreme learning machine[J]. Engineering Geology, 2017, 223: 11–22. [CrossRef] [Google Scholar]
  28. Junwei Ma, Huiming Tang, Xiao Liu, et al. Establishment of a deformation forecasting model for a step-like landslide based on decision tree C5 0 and two-step cluster algorithms: a case study in the Three Gorges Reservoir area, China[J]. Landslides, 2017, 14(3): 1275–1281. [CrossRef] [Google Scholar]
  29. Roger Sayre, Charlie Frye, Deniz Karagulle, et al. A new high-resolution map of world mountains and an online tool for visualizing and comparing characterizations of global mountain distributions[J]. Mountain Research and Development, 2018, 38(3): 240–249. [CrossRef] [Google Scholar]
  30. Ionut Cristi Nicu, Andrei Asăndulesei. GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluieţ River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger?[J]. Geomorphology, 2018, 314: 2741. [Google Scholar]
  31. Taskin Kavzoglu, Ismail Colkesen, Emrehan Kutlug Sahin. Machine learning techniques in landslide susceptibility mapping: a survey and a case study[J]. Landslides: Theory, practice and modelling, 2019: 283–301. [Google Scholar]
  32. Faming Huang, Jiawu Chen, Weiping Liu, et al. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold[J]. Geomorphology, 2022, 408: 108236. [CrossRef] [Google Scholar]
  33. Amit Kumar Batar, Teiji Watanabe. Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian Himalayan Region: recent developments, gaps, and future directions[J]. ISPRS International Journal of Geo-Information, 2021, 10(3): 114. [CrossRef] [Google Scholar]
  34. Chenglong Yu, Jianping Chen. Application of a GIS- based slope unit method for landslide susceptibility mapping in Helong city: comparative assessment of ICM, AHP, and RF model[J]. Symmetry, 2020, 12(11): 1848. [CrossRef] [Google Scholar]
  35. Faming Huang, Songyan Hu, Xueya Yan, et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Geological Science and Technology Bulletin, 2022, 41(2): 79–90. [Google Scholar]
  36. Wenbin Li, Yu Shi, Faming Huang, et al. Uncertainties of collapse susceptibility prediction based on remote sensing and GIS: effects of different machine learning models[J]. Frontiers in Earth Science, 2021, 9: 635. [Google Scholar]
  37. Viet-Ha Nhu, Danesh Zandi, Himan Shahabi, et al. Comparison of support vector machine, Bayesian logistic regression, and alternating decision tree algorithms for shallow landslide susceptibility mapping along a mountainous road in the west of Iran[J]. Applied Sciences, 2020, 10(15): 5047. [CrossRef] [Google Scholar]
  38. Faming Huang, Jing Zhang, Chuangbing Zhou, et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides, 2020, 17(1): 217–229. [CrossRef] [Google Scholar]
  39. Abdelaziz Merghadi, Ali P. Yunus, Jie Dou, et al. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance[J]. Earth-Science Reviews, 2020, 207: 103225. [CrossRef] [Google Scholar]
  40. Tao Chen, Li Zhu, Ruiqing Niu, et al. Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models[J]. Journal of Mountain Science, 2020, 17(3): 670–685. [CrossRef] [Google Scholar]
  41. A-Xing Zhu, Yamin Miao, Junzhi Liu, et al. A similarity-based approach to sampling absence data for landslide susceptibility mapping using data- driven methods[J]. Catena, 2019, 183: 104188. [CrossRef] [Google Scholar]
  42. Faming Huang, Zhongshan Cao, Jianfei Guo, et al. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping[J]. CATENA, 2020, 191: 104580. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.