Open Access
Issue
E3S Web Conf.
Volume 358, 2022
5th International Conference on Green Energy and Sustainable Development (GESD 2022)
Article Number 01041
Number of page(s) 5
Section Invited Contributions
DOI https://doi.org/10.1051/e3sconf/202235801041
Published online 27 October 2022
  1. B. Yuan, Y.Z. Zhang, G. Lu, et al. Research on key issues of energy storage development and application in power systems[J]. Electric Power, 2019, 52(3): 1–8. [Google Scholar]
  2. Consulting Group of SGCC to Prospects of New technologies in power systems. An analysis of prospects for application of largescale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1): 3–8. [Google Scholar]
  3. H.S. Chen, H. Li, W.T. Ma. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1056–1076. [Google Scholar]
  4. P. Liao, Z. Yao, J. Lemmon. Research progress and prospect of battery energy storage technology[J]. Energy Storage Science and Technology, 2020, 9(3): 670–678. [Google Scholar]
  5. C.X. Wang, Q.H. Li, X.J. Lei. Methodology for analyzing the value of energy storage to power system frequency control context of high shares of renewable energy[J]. Electric Power, 2016, 49(10): 148–152. [Google Scholar]
  6. D. Han, Z.H. Zhao, B.Z. Yan, et al. Status and prospect of China's pumped storage development in 2021[J], Water Power, 2022, 48(5), 1–5. [Google Scholar]
  7. W.C. Tu, W.Y. Li, Q. Zhang, et al. Engineering application of flywheel energy storage in power system[J]. Energy Storage Science and Technology, 2020, 9(3): 869–877 [Google Scholar]
  8. W.J. Li, G.M. Zhang, X.W. Wang, et al. Integration design of high-temperature superconducting bearing and electromagnetic thrust bearing for flywheel energy storage system[J]. Transactions of china electrotechnical society, 2020, 35(1): 10–18. [Google Scholar]
  9. S.H. Yu, W.Y. Guo, Y.P. Teng, et al. A review of the structures and control strategies for flywheel bearings [J]. Energy Storage Science and Technology, 2021, 10(5): 1631–1642. [Google Scholar]
  10. Y.J. Cao, F.M. Xia, H.L. Zhu, et al. Application and prospect of superconducting energy storage in new energy power system [J]. 2021, 10: 1–7. [Google Scholar]
  11. R.V. Holla. Energy storage methods- superconducting magnetic energy storage-a review[J]. Journal of Undergraduate Research, 2015, 5(1): 49–54. [Google Scholar]
  12. W.Y. Guo, J.Y. Zhang, Z.F. Zhang, et al. Research status and application prospect of superconducting energy storage system[J]. Science and technology review, 2016, 34(23): 68–80. [Google Scholar]
  13. C.Y. Tian, C.H. Zhang, K. Li, et al. Micro grid composite energy storage technology with compressed air energy storage and its cost analysis[J]. Aotumation of electric power systems, 2015, 39(10): 36–41. [Google Scholar]
  14. Z.G. Deng, H.T. Li. Recent development of high-temperature superconducting maglev[J]. Materials china, 2017, 36(05): 329–334. [Google Scholar]
  15. K. Glatzel, G. Khurdok, D. Rogg. The development of the magnetically suspended transportation system in the federal republic of germany[J]. IEEE Transactions on Vehicular Technology, 1980, 29(1): 3–17. [CrossRef] [Google Scholar]
  16. S. Suzuki, M. Kawashima, Y. Hosoda, et al. HSST-03 system[J]. IEEE Transactions on Magnetics, 1984, 20(5): 1675–1677. [CrossRef] [Google Scholar]
  17. J.Y. Xiong, Z.G. Deng. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. [Google Scholar]
  18. J.X. Wang. Introduction to the principle and application of maglev train[J]. Scientific and technological innovation, 2019, (15): 38–39. [Google Scholar]
  19. Y. Zhang, C. Wu. The maglev technology development route[J]. Technology and market 2017, 24(6): 101–104 [Google Scholar]
  20. Y.S. Li, A. Xu. Magnetic levitation technology development in Germany[J]. Urban Mass Transition, 2001, (2): 64–68. [Google Scholar]
  21. C.W. Feng, X. Fang, H.M. Li, et al. Technological development of high speed maglev system based on low vacuum pipeline[J]. Strategic Study of CAE, 2018, (6): 105–110. [Google Scholar]
  22. Z.L. Yu, K.H. Ren, T.W. Xu. Development trend of high speed rail transit[J]. Equipment Manufacturing Technology, 2020, (3): 230–232. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.