Open Access
Issue |
E3S Web Conf.
Volume 360, 2022
2022 8th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2022)
|
|
---|---|---|
Article Number | 01056 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/202236001056 | |
Published online | 23 November 2022 |
- Krois, J.; Schneider, L.; Schwendicke, F. Impact of Image Context on Deep Learning for Classification of Teeth on Radiographs. J. Clin. Med. 2021, 10, 1635. https://doi.org/10.3390/jcm10081635 [CrossRef] [Google Scholar]
- Wang H., Minnema J., Batenburg K.J., Forouzanfar T., Hu F.J., Wu G. Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning. J Dent Res. 2021 Aug;100(9):943–949. doi: 10.1177/00220345211005338. Epub 2021 Mar 30. PMID: 33783247; PMCID: PMC8293763. [CrossRef] [PubMed] [Google Scholar]
- Altaf F., Islam S.M., Akhtar N., Janjua N.K. 2019. Going deep in medical image analysis: concepts, methods, challenges, and future directions. IEEE Access. 7:99540–99572. [CrossRef] [Google Scholar]
- Chen X., Liew J.H., Xiong W., Chui C.K., Ong S.H. 2018. Focus, segment and erase: an efficient network for multi-label brain tumor segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., editors. Computer vision—ECCV 2018. Lecture notes in computer science. Vol. 11217. Cham (Switzerland): Springer. [Google Scholar]
- Chen S., Wang L., Li G., Wu T.H., Diachina S., Tejera B., Kwon J.J., Lin F.C., Lee Y.T., Xu T., et al. 2020. Machine learning in orthodontics: introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess maxillary constriction in unilateral impacted canine patients. Angle Orthod. 90(1):77–84. [CrossRef] [PubMed] [Google Scholar]
- Pelt D.M., Sethian J.A. 2018. A mixed-scale dense convolutional neural network for image analysis. Proc Natl Acad Sci U S A. 115(2):254–259. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.