Open Access
Issue
E3S Web Conf.
Volume 360, 2022
2022 8th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2022)
Article Number 01079
Number of page(s) 19
DOI https://doi.org/10.1051/e3sconf/202236001079
Published online 23 November 2022
  1. Y.-F. Li, Electricity load forecasting. [J] Journal of Nanchang College, 2007, 22(6): 143–145. [Google Scholar]
  2. J. Huo, X.-W. Sun, M.-J. Zhang, Comparison Between Power Load Forecasting Algorithms Based on Random Forest and Support Vector Machine. [J] Proceedings of the CSU-EPSA, 2019, 31(07):129–134. DOI:10.19635/j.cnki.csu-epsa.000093. [Google Scholar]
  3. S.-H. Guan, Y.-X. Shen, Power load forecasting based on PSO RBF-NN. [J] Transducer and Microsystem Technologies, 2021, 40(05):128–131. DOI:10.13873/J.1000-9787 (2021)05-0128-04. [Google Scholar]
  4. Y.-J. Dong, X.-T. Wang, H.-M. Ma, L.-B. Wang, M.-Y. Li, F.-D. Yue, H. Yuan, Power Load Forecasting Method Based on Random Forest and Long Short-term Memory [J] Journal of Global Energy Interconnection, 2022, 5(02):147–156. DOI:10.19705/j.cnki.issn2096-5125.2022.02.006. [Google Scholar]
  5. Bozkurt Ö.Ö., Biricik G., Tayşi Z.C. Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market. PLoS One 2017; 12(4): e0175915. doi: DOI: 10.1371/journal.pone.0175915. [CrossRef] [PubMed] [Google Scholar]
  6. Neeraj, Mathew, J. & Behera, R.K. Power load forecasting based on long short term memory-singular spectrum analysis. Energy Syst (2021). https://doi.org/10.1007/s12667-020-00424-6 [Google Scholar]
  7. J.-F. Zhu, W.-G. Chen, H.-T. Zai, K. Zhang, X.-R. Wang, Comparative discussion on power load forecasting based on ARIMA and LSTM. [J] Theoretical Analysis, 2022, 41(02):27–31. [Google Scholar]
  8. B. Zhang, F. Zhou, Q. Li, Traffic Delay Index Forecast of Beijing Capital International Airport Based on LSTM Model. [J] Journal of Applied Statistics and Management, 2020, 39(05):761–770. DOI:10.13860/j.cnki.sltj.20200818-002. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.