Open Access
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 13001
Number of page(s) 7
Section Commissioning and Demand Response
Published online 01 December 2022
  1. Abbe, E. and C. Sandon (2020). On the universality of deep learning. Advances in Neural Information Processing Systems 33, 20061–20072. [Google Scholar]
  2. Anderson, C. (2015). Docker [software engineering]. Ieee Software 32(3), 102–c3. [CrossRef] [Google Scholar]
  3. Antonelo, E. A., E. Camponogara, L. O. Seman, E. R. de Souza, J. P. Jordanou, and J. F. Hubner (2021). Physics-informed neural nets for control of dynamical systems. arXiv preprint arXiv:2104.02556. [Google Scholar]
  4. Arroyo, J., F. Spiessens, and L. Helsen (2022, May). Comparison of Model Complexities in Optimal Control Tested in a Real Thermally Activated Building System. Buildings 12(5), 539. Number: 5 Publisher: Multidisciplinary Digital Publishing Institute. [CrossRef] [Google Scholar]
  5. Auger, F., M. Hilairet, J. M. Guerrero, E. Monmasson, T. Orlowska-Kowalska, and S. Katsura (2013). Industrial applications of the kalman filter: A review. IEEE Transactions on Industrial Electronics 60(12), 5458–5471. [CrossRef] [Google Scholar]
  6. Bacher, P. and H. Madsen (2011). Identifying suitable models for the heat dynamics of buildings. Energy and Buildings 43(7), 1511–1522. [CrossRef] [Google Scholar]
  7. Blum, D., J. Arroyo, S. Huang, J. Drgona, F. Jorissen, H. T. Walnum, Y. Chen, K. Benne, D. Vrabie, M. Wetter, and L. Helsen (2021). Building optimization testing framework (BOPTEST) for simulation-based benchmarking of control strategies in buildings. 586–610. Accepted: 2021-11-15T09:53:06Z Publisher: Taylor & Francis. [Google Scholar]
  8. Blum, D. H., K. Arendt, L. Rivalin, M. A. Piette, M. Wetter, and C. T. Veje (2019, feb). Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems. Applied Energy 236, 410–425. [CrossRef] [Google Scholar]
  9. Drgona, J., J. Arroyo, I. C. Figueroa, D. Blum, K. Arendt, D. Kim, E. P. Olle, J. Oravec, M. Wetter, D. L. Vrabie, et al. (2020). All you need to know about model predictive control for buildings. Annual Reviews in Control. [Google Scholar]
  10. Drgona, J., J. Arroyo, I. Cupeiro Figueroa, D. Blum, K. Arendt, D. Kim, E. P. Olle, J. Oravec, M. Wetter, D. L. Vrabie, and L. Helsen (2020, January). All you need to know about model predictive control for buildings. Annual Reviews in Control 50, 190–232. [CrossRef] [Google Scholar]
  11. Futurehome (2021). Local API access over MQTT (Beta). [Online; accessed 4-May-2021]. [Google Scholar]
  12. Grinberg, M. (2018). Flask web development: developing web applications with python. ” O’Reilly Media, Inc.”. [Google Scholar]
  13. Hensen, J. and R. Lamberts (edited by) (2019). Building performance simulation for design and operation (Second edition ed.). Abingdon, Oxon; New York, NY: Routledge. [Google Scholar]
  14. Hunkeler, U., H. L. Truong, and A. Stanford-Clark (2008, January). MQTT-S - A publish/subscribe protocol for Wireless Sensor Networks. In 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE '08), Bangalore, India, pp. 791–798. IEEE. [CrossRef] [Google Scholar]
  15. Inc., P T. (2015). Collaborative data science. [Google Scholar]
  16. Lu, Q., A. K. Parlikad, P. Woodall, X. Xie, Z. Liang, E. Konstantinou, J. Heaton, and J. Schooling (2019, October). Developing a dynamic digital twin at building and city levels: A case study of the West Cambridge campus. Journal of Management in Engineering 36. [Google Scholar]
  17. Maree, J. P., S. Gros, and H. T. Walnum (2021). Adaptive control and identification for heating demand-response in buildings. In 2021 European Control Conference (ECC), pp. 1931–1936. IEEE. [CrossRef] [Google Scholar]
  18. Microsoft (2022). Visual Studio Code - Code Editing. Redefined. [Google Scholar]
  19. Mohammed, C. M., S. R. Zeebaree, et al. (2021). Sufficient comparison among cloud computing services: Iaas, paas, and saas: A review. International Journal of Science and Business 5(2), 17–30. [Google Scholar]
  20. Qin, S. J. and T. A. Badgwell (2003). A survey of industrial model predictive control technology. Control engineering practice 11(7), 733–764. [CrossRef] [Google Scholar]
  21. Raissi, M., P. Perdikaris, and G. E. Karniadakis (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707. [CrossRef] [Google Scholar]
  22. Rasheed, A., O. San, and T. Kvamsdal (2020). Digital Twin: Values, Challenges and Enablers From a Modeling Perspective. IEEE Access 8, 21980–22012. Conference Name: IEEE Access. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.