Open Access
Issue
E3S Web Conf.
Volume 363, 2022
XV International Scientific Conference on Precision Agriculture and Agricultural Machinery Industry “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2022”
Article Number 01038
Number of page(s) 10
Section Sustainable Mobility and Logistics
DOI https://doi.org/10.1051/e3sconf/202236301038
Published online 14 December 2022
  1. А. Marzani, М Mazzotti, Е. Viola, & $. Vittori, I. Elishakoff, FEM Formulation for Dynamic Instability of Fluid-Conveying Pipe on Nonuniform Elastic Foundation.Mech based des struct mech. 40. 83–95. January (2012). doi:10.1080/15397734.2011.618443 [CrossRef] [Google Scholar]
  2. R. Barros, & М. Pereira, A parametric study on the comprehensive analysis of pipelines under generalized actions l3th World Conference on Earthquake Engineering Vancouver, B.C., Canada. August l-6 No. 2311, (2004).Paper. https://www.iitk.ac.in/nicee/wcee/article/l3_2311.pdf [Google Scholar]
  3. R. McDonald, & N. Namachchivaya, Pipes conveying pulsating fluid near a 0:l resonance: Global bifurcations. J FLUID STRUCTURE. 21. 665–687 (2005). doi:10.1016/j.jfluidstructs.2005.07.015 [CrossRef] [Google Scholar]
  4. J. Jin, Z. Song, Parametric resonances of supported pipes conveying pulsating fluid. J FLUID STRUCTURE. 20. 763–783 (2005). doi: 10.1016/j.jfluidstructs.2005.04.007 [CrossRef] [Google Scholar]
  5. R. Bahaadini, M. Dashtbayazi, M. Hosseini, Z. Khalili-Parizi, Stability analysis of composite thin-walled pipes conveying fluid Ocean Eng. 2018. V. 160. P. 311 - 323. doi: 10.1016/j.oceaneng.2018.04.061 [CrossRef] [Google Scholar]
  6. H. Yang, Z. Wang, F. Xiao, Parametric resonance of submerged floating pipelines with bi-frequency parametric and vortex-induced oscillations excitations.Ships and Offshore Structures. 12. l-9 (2016). doi:10.1080/17445302.2016.1171590 [Google Scholar]
  7. L. Zhou, F Chen, Y Chen, Stability and Bifurcation Analysis of a Pipe Conveying Pulsating Fluid with Combination Parametric and Internal Resonances. Mathematical and Computational Applications. 20. 200-216 doi:10.19029/mca-2015-017 [CrossRef] [Google Scholar]
  8. V. Sokolov, I. Razov, Y Ogorodnova. Effect of internal pressure on parametric vibrations and dynamic stability of thin-walled ground pipeline larger diameter connect with elastic foundation, MATEC Web of Conferences 73, (2016). doi:10.1051/matecconf/20167304002 [CrossRef] [EDP Sciences] [Google Scholar]
  9. L. Panda, R. Kar. Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dynamics. 49. 9–30 (2007). doi:10.1007/s11071-006-9100-6 [CrossRef] [Google Scholar]
  10. M. Il’gamov, M. SHakir’yanov, Forced and parametric fluctuations of the pipeline Izvestiya Ufimskogo nacional’nogo centra RAN 2020; 3: 5-ll (2020). doi: 10.31040/2222-8349-2020-0-3-5-11 [Google Scholar]
  11. B. Khudayarov, Kh. Komilova, Numerical simulation of vibrations of viscoelastic pipelines conveying two-phase medium in a slug flow regime, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika. 95-ll0. doi: 10.17223/19988621/61/9 [Google Scholar]
  12. B. Khudayarov, F Turaev, Mathematical modeling parametric vibrations of the pipeline with pulsating fluid flo, IOP Conference Series: Earth and Environmental Science. 614. 012103. doi: 10.1088/1755-1315/614/1/012103 [Google Scholar]
  13. A. Dmitriev, V Sokolov. Dynamic calculation of an underground thin-walled pipeline taking into account the influence of a damper, Vestnik evrazijskoj nauki. T. 12 (2020); 2:5. https://esj.today/PDF/l9SAVN220.pdf [Google Scholar]
  14. V. Sokolov, A. Dmitriev, Free vibrations of underground rectilinear thin-walled sections of gas pipelines, Vestnik grazhdanskih inzhenerov. 2 (73) 29–34(2019). doi: 10.23968/1999-5571-2019-16-2-29-34 [Google Scholar]
  15. V Sokolov, I. Razov, A. Dmitriev, Influence of the length parameter of an underground oil pipeline on the frequency of free oscillation. ii E3S Web of Conferences. Topical Problems of Green Architecture, Civil and Environmental Engineering, TPACEE 2019 (2019). doi: 10.1051/e3sconf/202016403024 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. N. Bogolyubov, U. Mitropol’skij, Asymptotic methods in the theory of nonlinear oscillations. M.: Nauka, 1974. [Google Scholar]
  17. A. Dmitriev, V. Sokolov, A. Bereznev, Frequency characteristics of a large-diameter pipeline with a fluid flow in an elastic ground environment, taking into account internal pressure. The Eurasian Scientific Journal, [online] 6(12) (2020). Available at: https://esj.today/PDF/05SAVN620.pdf [Google Scholar]
  18. A. Dmitriev V. Sokolov, A. Bereznyov, Influence of longitudinal force and internal pressure on the frequency of free vibrations of an underground oil pipeline. In the collection: E3S Web of Conferences.%ер. “International Scientific and Practical Conference “Environmental Risks and Safety in Mechanical Engineering”, ERSME 2020" (2020) doi: 10.1051/e3sconf/202021701010 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.