Open Access
Issue
E3S Web Conf.
Volume 363, 2022
XV International Scientific Conference on Precision Agriculture and Agricultural Machinery Industry “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2022”
Article Number 01049
Number of page(s) 8
Section Sustainable Mobility and Logistics
DOI https://doi.org/10.1051/e3sconf/202236301049
Published online 14 December 2022
  1. 1. N. R. Nusantika, X. Xiao Hu, J., Improvement Canny Edge Detection for the UAV Icing Monitoring of Transmission Line Icing, Proceedings of the 16th IEEE Conference on Industrial Electronics and Applications, ICIEA. Pp l838 – l843 (2021) doi: 10.1109/ICIEA51954.2021.9516053 [Google Scholar]
  2. H. Wang, Unsupervised anomaly detection in railway catenary condition monitoring using autoencoders, IECON Proceedings (Industrial Electronics Conference), 9254633, с. 2636-2641 (2020) doi: 10.1109/iecon43393.2020.9254633. [Google Scholar]
  3. L. Wei, J. Zou, Application of Model Predictive Control in WPT for Monitoring Devices of Overhead High Voltage Transmission Line, 7th IEEE International Conference on High Voltage Engineering and Application, ICHVE (2020) doi: 10.1109/ICHVE49031.2020.9280091. [Google Scholar]
  4. H. Lishuai, W. Xiaofeng, S. Yang, G. Lei, H. Yunkun, Research and application of transmission line environmental monitoring based on optical fiber sensing technology, Journal of Physics: Conference Series 1607(1),012018 (2020) doi: 10.1088/1742-6596/1607/1/012018 [CrossRef] [Google Scholar]
  5. C. Gutiérrez, J. Hidders, P.T. Wood, Graph data models, In: Sakr, S., Zomaya, A.Y. (eds.) Encyclopedia of Big Data Technologies, pp.830–835. Springer, Cham (2019). doi: 10.1007/978-3-319-77525-8_81 8 l [Google Scholar]
  6. S. Ghosh, S. Dutta, Ensemble Machine Learning Methods for better Dynamic Assessment of Transformer Status, J. Inst. Eng. India Ser. B (2021) doi: 10.1007/s40031-021-00599-1 [Google Scholar]
  7. M.S. Katooli, A. Koochaki, Detection and Classification of Incipient Faults in Three- Phase Power Transformer Using DGA Information and Rule-based Machine Learning Method, J Control Autom Electr Syst 31, 1251–1266 (2020) doi: 10.1007/s40313-020-00625-5 [CrossRef] [Google Scholar]
  8. Y. Kim, T. Park, S. Kim et al., Artificial Intelligent Fault Diagnostic Method for Power Transformers using a New Classification System of Faults, J. Electr. Eng. Technol. 14, 825–831 (2019) doi: 10.1007/s42835-019-00105-0 [CrossRef] [Google Scholar]
  9. A. Smerdin, E.A. Butenko, S.A. Stupakov, G. Ermachkov, Transverse horizontal vibrations of contact network wires for monitoring their tension during operation, E3S Web of Conferences 217,03002 (2020) doi:10.1051/e3sconf/202021703002 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. A. Golubkov, G. Ermachkov, A. Smerdin, O. Sidorov, V. Philippov, Increasing the forecasting fidelity of current collection system operating capability by means of contact pressure simulation modelling, E3S Web of Conferences 217,03003 (2020) doi: 10.1051/e3sconf/202021703003 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. E. Carrizosa, C. Molero-Río, D. Romero Morales, Mathematical optimization in classification and regression trees, TOP 29, 5–33 (2021) doi: 10.1007/s11750-021-00594-1 [Google Scholar]
  12. R. Sambasivan, S. Das, Classification and regression using augmented trees, Int J Data Sci Anal 7, 259–276 (2019) doi: 10.1007/s41060-018-0146- [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.