Open Access
Issue |
E3S Web Conf.
Volume 363, 2022
XV International Scientific Conference on Precision Agriculture and Agricultural Machinery Industry “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2022”
|
|
---|---|---|
Article Number | 04058 | |
Number of page(s) | 9 | |
Section | Environmental Education and Digital Solutions. Environmentally Responsible Behavior | |
DOI | https://doi.org/10.1051/e3sconf/202236304058 | |
Published online | 14 December 2022 |
- C. Pfeifer, Economic Letters 99, 570-573 (2008) [CrossRef] [Google Scholar]
- J. Messina, C. Strozzi, J. Turunen, Journal of Economic Dynamics & Control 33, 1183-1200 (2009) [CrossRef] [Google Scholar]
- W. Ahmed, M. A. Choudhary, S. Khan, S. Naeem, G. Zoega, Economic Modelling 38, 296-304 (2014) [CrossRef] [Google Scholar]
- Z. Goschin, Procedia Economics and Finance 8, 362-369 (2013) DOI: 10.1016/S2212-5671(14)00102-6 [Google Scholar]
- R. Girardi, P. Paruolo, Economic Modelling 35, 643-653 (2013) DOI: 10.1016/j.econmod.2013.08.009 [CrossRef] [Google Scholar]
- R. Cabral, A. V. Varella Mollick, Economic Modelling 64, 141-152 (2017) http://dx.doi.org/10.1016/j.econmod.2017.03.013 [CrossRef] [Google Scholar]
- J. L. Castle, D. F. Hendry, Journal of Macroeconomics 31, 5-28 (2009) [CrossRef] [Google Scholar]
- Pinkston, J. C. (2003). Screening discrimination and the determinants of wages, Labour Economics, 10, 643-658. [Google Scholar]
- L. Feng, J. Zhang, Economic Modelling 40, 76-80 (2014) DOI: 10.1016/jeconmode.2014.03.024 [CrossRef] [Google Scholar]
- J. Moody, Economic forecasting: challenges and neural network solutions, In Proceedings of the International Symposium on Artificial Neural Networks, Hsinchu, Taiwan, December 1995 (1995) [Google Scholar]
- E. Nakamura, Economic Letters 86, 373-378 (2005) DOI: 10.1016/j.econlet.2004.09.003 [CrossRef] [Google Scholar]
- D. Farhat, Artificial Neural Networks and Aggregate Consumption Patterns in New Zealand, University of Otago Economics Discussion Papers No. 1205 (2012) [Google Scholar]
- M. J. B. Hall, D. Muljawan, L. Suprayogi & Moorena, Using The Artificial Neural Network (ANN) to Assess Bank Credit Risk: A Case Study of Indonesia, Discussion Paper Series 2008_06, Department of Economics, Loughborough University, revised Jul 2008 (2008) [Google Scholar]
- J. Cetkovic, S. Lakic, M. Lazarevska, et al., Assessment of the Real Estate Market Value in the European Market by Artificial Neural Networks Application, Complexity (2018) https://doi.org/10.1155/2018/1472957 [Google Scholar]
- I. A. Basheer, M. Hajmeer, Journal of Microbilogical Methods 43 (1),3-31 (2000) DOI: 10.1016/S0167-7012(00)00201-3 [CrossRef] [Google Scholar]
- S. A. Hamid, Primer on Using Neural Networks for Forecasting Market Variables, Working Paper No. 03 (2004) [Google Scholar]
- B. Nolan, M. Roser, S. Thewissen, GDP per capita versus median household income: what gives rise to divergence over time? Institute for New Economic Thinking at he Oxford Martin School, INET Oxford Working Paper no. 2016-03 (2016) [Google Scholar]
- D. Aaronson, D. Sullivan, Recent Evidence on the Relationship Between Unemployment and Wage Growth, Federal Reserve Bank of Chicago Working Paper, no. 2000-27 (2000) https://papers.ssrn.com/sol3/papers.cfm?abstract_id=255578 [Google Scholar]
- M. Feldstein, Journal of Policy Modeling 0(4), 591-594 (2008) DOI: 10.3386/w13953 [CrossRef] [Google Scholar]
- EPI – Economic Policy Institute, The Productivity–Pay Gap, Retrieved May 31, 2018 (2017) https://www.epi.org/productivity-pay-gap/ [Google Scholar]
- A. Tuckett, Does productivity drive wages? Evidence from sectoral data, Retrieved May 19, 2018 (2017) https://bankunderground.co.uk/2017/03/30/does-productivity-drive-wages-evidence-from-sectoral-data/ [Google Scholar]
- B. Aitken, A. Harrison, R. E. Lipsey, Journal of International Economics 40, 345-371 (1996) http://dx.doi.org/10.1016/0022-1996(95)01410-1 [CrossRef] [Google Scholar]
- J. Stiglitz, Capital Market Liberalization, Economic Growth, and Instability, World Development 28(6), 1075-1086. DOI: 10.1016/S0305-750X(00)00006-1 [Google Scholar]
- B. Decreuse, P. Maarek, FDI and the labor share in developing countries: A theory and some evidence, MPRA Paper No. 11224, Retrieved June 1, 2018 (2008) https://mpra.ub.uni-muenchen.de/11224/1/MPRA_paper_11224.pdf [Google Scholar]
- R. E. Lipsey, F. Sjoholm, Journal of Development Economics 73 (1), 415-422 (2004) [CrossRef] [Google Scholar]
- R. M. Vijaya, L. Kaltani, Journal of World-Systems Research 13(1), 83-95 (2007) https://doi.org/10.5195/jwsr.2007.361 [CrossRef] [Google Scholar]
- M. Gopinath, W. Chen, The Journal of International Trade & Economic Development 13(2), 231-231 (2004) https://doi.org/10.1080/0963819042000246619 [CrossRef] [Google Scholar]
- R. E. Lipsey, Home and host-country effects of foreign direct investment. Challanges to globalization: analyzing the economics (University of Chicago Press, Chicago, 2004) [Google Scholar]
- OECD, Do Multinationalas Promote Better Pay and Working Conditions?. Retrieved March 29, 2018 (2008) http://www.oecd.org/employment/emp/43244752.pdf [Google Scholar]
- O. Onaran, E. Stockhammer, Structural Change and Economic Dynamics 19 (1), 66-80 (2008) [CrossRef] [Google Scholar]
- O. Onaran, E. Stockhammer, European Journal of Industrial Relations 15(3), 317-338 (2009) [CrossRef] [Google Scholar]
- N. Majid, What is the Effect of Trade Openness on Wages, ILO Employment Stratgey Papers, no. 2004/18 (2004) [Google Scholar]
- H. Gorg, D. Greenaway, The World Bank Research Observer 19 (2), 171-197 (2004) https://doi.org/10.1093/wbro/lkh019 [CrossRef] [Google Scholar]
- A. Nichols, S. Zimmerman, Measuring trends in income variability (The Urban Institute, Washington, DC, 2008) 35. U.S. Congressional Budget Office, Trends in earnings variability over the past 20 years. Retrieved May 26, 2018 (2007) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.