Open Access
Issue
E3S Web of Conf.
Volume 365, 2023
IV International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2022)
Article Number 01011
Number of page(s) 13
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202336501011
Published online 30 January 2023
  1. Boussinesk J., Essai sur la théorie des eaux courantes.-Paris: Mémoires présentées par diverses savants à l’Acad. D. Sci., 23, (1877) [Google Scholar]
  2. Prandtl L. Untersuchungen zur ausgebildeteTurbulenz.-Zeitschr. f. Angew. Math. u. Mech., 5, (1925) [Google Scholar]
  3. Karman Th. Mechanische Ahnlichkeit und Turbulenz. – Nachr. d. Gesellsch. d. Wissen. Zu Gottingen, Math. Phys. Kl., (1930) [Google Scholar]
  4. Spalart P. R., Allmaras S. R. Aone-equation turbulence model for aerodynamic flows. AIAA p.0439, (1992) [Google Scholar]
  5. Menter F. R.“Zonal two-equation k-ω turbulence models for aerodynamic flows”. AIAAPaper 1993–2906. [Google Scholar]
  6. Menter F. R., Kuntz M., and Langtry R. “TenYears of Industrial Experience with the SST Turbulence Model”. Turbulence, Heat and Mass Transfer 4, ed: K. Hanjalic, Y. Nagano, and M. Tummers, Begell House, pp. 625 – 632 (2003) [Google Scholar]
  7. Erkinjon son M.M. Numerical Calculation of an Air Centrifugal Separator Based on the SARC Turbulence Model, J. Appl. Comput. Mech., 7(2), (2021) https://doi.org/10.22055/JACM.2020.31423.1871 [Google Scholar]
  8. Malikov Z.M., Madaliev M.E. Numerical Simulation of Two-Phase Flow in a Centrifugal Separator. Fluid Dynamics. 55(8). pp. 1012–1028 (2020) doi: 10.1134/S0015462820080066 [CrossRef] [Google Scholar]
  9. Malikov Z. “Mathematical Model of Turbulence Based on the Dynamics of Two Fluids”. Applied Mathematical Modeling. 82, pp. 409–436 (2020) [CrossRef] [Google Scholar]
  10. Cristopher R Responsible NASA official. Turbulence modeling Resource. NASA Langley Research Center, http://turbmodels.larc.nasa.gov.(accesseddate04.04.2019) [Google Scholar]
  11. Malikov Z.M., Madaliev M.E. New two-fluid turbulence model-based numerical simulation of flow in a flat suddenly expanding channel. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 4(97), pp. 24–39 (2021) https://doi.org/10.18698/1812-3368-2021-4-24-39 [Google Scholar]
  12. Anderson D, Tannehill J, Pletcher R. Computational fluid mechanics and heat transfer. -M.: Mir, 1, (1990) [Google Scholar]
  13. Patankar S.V. Numerical Heat Transfer and Fluid Flow. Taylor&Francis. (1980) [Google Scholar]
  14. Cevheri M., McSherry R., and Stoesser T. A local mesh refinement approach for large‐eddy simulations of turbulent flows. International Journal for Numerical Methods in Fluids, 82(5), 261–285 (2016) [CrossRef] [Google Scholar]
  15. A. A. Mirzoev, M. Madaliev, and D. Y. Sultanbayevich. Numerical modeling of nonstationary turbulent flow with double barrier based on two liquid turbulence model. in 2020 International Conference on Information Science and Communications Technologies (ICISCT). 1–7. (2020) [Google Scholar]
  16. Schoenherr K. E. Resistance of flat plate. Trans. SNAME. 40, pp. 279–313, (1932) [Google Scholar]
  17. Coles D. E. The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, pp.191–226, (1956) [CrossRef] [Google Scholar]
  18. Coles D. The turbulent boundary layer in a compressible fluid. J. Fluid Mech. 1, p.191. Rep.R-403-PR, Rand Corp., Santa Monica, California (1962) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.