Open Access
Issue
E3S Web of Conf.
Volume 365, 2023
IV International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2022)
Article Number 01022
Number of page(s) 9
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202336501022
Published online 30 January 2023
  1. Yeliseev S. V., Artyunin A. I. Applied theory of oscillations in problems of dynamics of linear mechanical systems, Novosibirsk: Nauka, Russia (2016) [Google Scholar]
  2. Yeliseev S. V. Dynamic vibration dampener as a means of controlling the dynamic state of a vibration protection system Scientific publication of the Moscow state technical University. Science and education 8 (2011) [Google Scholar]
  3. Khomenko A. P., Yeliseev S. V. On some properties of dynamic vibration damping in mechanical systems, Irkutsk: ISU, Russia (2000) [Google Scholar]
  4. Yeliseev S. V., Reznik Yu. I., Khomenko A. P., Zasyadko A. A. Dynamic synthesis in generalized problems of vibration protection and vibration isolation of technical objects, Irkutsk: ISU, Russia (2008) [Google Scholar]
  5. Karnovsky I. A., Lebed E. Theory of Vibration Protection, Switzerland: Springer International Publishing (2016) [Google Scholar]
  6. Yeliseev S. V., Reznik Yu. I., Khomenko A. P. Mechatronic approaches in the dynamics of mechanical oscillatory systems, Novosibirsk: Nauka, Russia (2011) [Google Scholar]
  7. Yeliseev S. V., Bolshakov R. S., Nikolaev A. V. Development of approaches in problems of dynamics of technological machines and vehicles under vibration loads Bulletin of BSTU, 3 (64) (2018) [Google Scholar]
  8. Akhmadeeva A A, Gozbenko V E Rational assignment of the number of degrees of freedom of a dynamic model of a freight car Systems. Methods. Technologies, Bratsk: Bratsk state University, Russia (2011) [Google Scholar]
  9. Verigo M. F. The Dynamics of the cars, Moscow: Transport, Russia (1988) [Google Scholar]
  10. Vershinskaya S. V., Danilov V. N., Chosidow V D Dynamics of the car. Moscow: Transport, Russia (1991) [Google Scholar]
  11. Gozbenko V E, Karlina A I 2016 Mathematical model of a car with two degrees of freedom under the influence of a periodic driving force Izvestiya Transsib (Irkutsk, Russia) [Google Scholar]
  12. Garg V. K., Dukkipati R. V. Dynamics of rolling stock, Moscow: Transport, Russia (1988) [Google Scholar]
  13. Nikolaev V A 2003 Development of methods for analytical design of quasi-invariant systems for spring suspension of railway carriages, PhD dissertation, Omsk, Russia [Google Scholar]
  14. Vorotilkin A. V., Kargapoltsev S. K., Gozbenko V. E. Mathematical model of dynamic interaction in the “wheel-rail” system taking into account their lubrication DEP. in VINITI, 152 (2006) [Google Scholar]
  15. Olentsevich V. A., Gozbenko V. E. Analysis of the reasons for violation of the safety of the railway transport system Modern technologies. System analysis. Modeling 1, (2013) [Google Scholar]
  16. Kauderer G. Nonlinear mechanics, Moscow: Nauka, Russia (1970) [Google Scholar]
  17. Rabotnov Yu. N., Elements of hereditary mechanics of solids, Moscow: Nauka, Russia (1977) [Google Scholar]
  18. Badalov F B, Eshmatov Kh and Yusupov M 1987 On some methods for solving systems of integro-differential equations encountered in viscoelasticity problems. Applied mathematics and mechanics 1 [Google Scholar]
  19. Akhmedov A. B., Badalov F B.,, and Yusupov M. Numerical solution of inhomogeneous non-linear boundary problems of structural elements Abstracts of reports in the Inter-Republican Conference, Volgograd, Russia (1990) [Google Scholar]
  20. Belokobylsky S. V., Eliseev S. V., Kashuba V. B., Bolshakov R. S. Self-organization of interaction of elements of mechanical systems in connections with devices for converting motion Systems. Methods. Technologies, 1 (29) (2016) [Google Scholar]
  21. Badalov F. B., Eshmatov Kh., and Yusupov M. About some methods for solving systems of integro-differential equations encountered in viscoelastic problems Applied Mathematics and Mechanic, 5 (1987) [Google Scholar]
  22. Yusupov M., Rahkmankulova B. O. and Aynakulov Sh. A. Numerical solutions of the problem of salt-transfer in soils. E3S Web of Conferences, Tashkent, Uzbekistan (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.