Open Access
Issue
E3S Web of Conf.
Volume 365, 2023
IV International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2022)
Article Number 03004
Number of page(s) 8
Section Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction
DOI https://doi.org/10.1051/e3sconf/202336503004
Published online 30 January 2023
  1. B. Zhang and R. S. Govindaraju, Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds, (Journal of Hydrology, 2003), 273, pp. 18–34. [Google Scholar]
  2. M. R. Yazdani, B. Saghafian, M. H. Mahdian and S. Soltani, Monthly Runoff Estimation Using Artificial Neural Networks, (J. Agric. Sci. Technol. 2009), 11, pp. 355–362 [Google Scholar]
  3. P. Jimeno-s, J. Senent-aparicio and D. Pulido-velazquez, A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain, (Water 2018), 10(2), 192, doi: 10.3390/w10020192 [Google Scholar]
  4. S. Srinivasulu and A. Jain, A comparative analysis of training methods for artificial neural network rainfall – runoff models, (Applied Soft Computing, 2006) 6, 295–306, doi: 10.1016/j.asoc.2005.02.002 [CrossRef] [Google Scholar]
  5. K. Solaimani K, Rainfall-runoff Prediction Based on Artificial Neural Network (A Case Study : Jarahi Watershed), (American-Eurasian J. Agric. & Environ. Sci., 2009), 5, 6, pp. 856–865 [Google Scholar]
  6. G. Tayfur and V. P. Singh, ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff, (J. Hydraul. Eng., 2006), 132 (12), pp. 1321–1330 [CrossRef] [Google Scholar]
  7. Z. Şen and A. Altunkaynak, A comparative fuzzy logic approach to runoff coefficient and runoff estimation, (Hydrol. Process., 2006), 20(9), 1993–2009, doi: 10.1002/hyp.5992. [CrossRef] [Google Scholar]
  8. A. K. Lohani, N. K. Goel, K. K. S. and Bhatia, Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall-runoff modelling under different input domains, (Hydrol. Process., 2011), 25(2), pp. 175–193, doi: 10.1002/hyp.7831. [CrossRef] [Google Scholar]
  9. N. Hammouri and A. El-Naqa, Hydrological modeling of ungauged wadis in arid environments using GIS: a case study of Wadi Madoneh in Jordan, (Revista Mexicana de Ciencias Geologicas, 2007), 27(2), pp.185-196. [Google Scholar]
  10. E. Abushandi and B. Merkel, Modelling Rainfall Runoff Relations Using HEC-HMS and IHACRES for a Single Rain Event in an Arid Region of Jordan, (Water Resour Manage, 2013), vol 27, DOI 10.1007/s11269-013-0293-4. [Google Scholar]
  11. A. Derdour, A. Bouanani, and K. Babahamed, Modelling rainfall runoff relations using HEC-HMS in a semi-arid region: Case study in Ain Sefra watershed, Ksour Mountains (SW Algeria), (JOURNAL OF WATER AND LAND DEVELOPMENT, 2017), No. 36. DOI: 10.2478/jwld-2018-0005. [Google Scholar]
  12. A. Haddad and B. Remini, EXTREME RAINFALL-RUNOFF EVENTS MODELING BY HEC-HMS MODEL FOR KOUDIET ROSFA WATERSHED, ALGERIA, (GeoScience Engineering, 2021), 67(4). [Google Scholar]
  13. A. N. A. Hamdan, S. Almuktar, and M. Scholz, Rainfall-Runoff Modeling Using the HEC-HMS Model for the Al-Adhaim River Catchment, Northern Iraq, (Hydrology, 2021) 8, 58. https://doi.org/10.3390/hydrology802005. [CrossRef] [Google Scholar]
  14. P. Santra, and B. S. Das, Modeling runoff from an agricultural watershed of western catchment of Chilika lake through ArcSWAT, (Journal of Hydro-environment Research, 2013) 7, pp. 261-269. [CrossRef] [Google Scholar]
  15. J. Saade, M. Atieh, S. Ghanimeh, and G. Golmohammadi, Modeling Impact of Climate Change on Surface Water Availability Using SWAT Model in a Semi-Arid Basin: Case of El Kalb River, Lebanon, (Hydrology, 2021), 8(134). https:// doi.org/10.3390/hydrology8030134. [CrossRef] [Google Scholar]
  16. M. T. Kok, K. S. Wei, L. W. Chien, J. K. Huiling, and B. P. Suresh, Evaluation of performance of Active, Beautiful and Clean (ABC) on stormwater runoff management using MIKE URBAN: a case study in a residential estate in Singapore, (Urban Water Journal, 2019), DOI: 10.1080/1573062X.2019.1634744 [Google Scholar]
  17. A. A. Ghebrehiwot, D. V. Kozlov, Assessment of applicability of mike 11 NAM hydrological module for rainfall runoff modelling in a poorly studied river basin, (Vestnik MGSU, 2020), Vol. 15(7), DOI: 10.22227/1997-0935.2020.7.1030-1046. [Google Scholar]
  18. M. R. Aredo, S. D. Hatiye, and S. M. Pingale, Modeling the rainfall runof using MIKE 11 NAM model in Shaya catchment, Ethiopia, (Modeling Earth Systems and Environment, 2021) https://doi.org/10.1007/s40808-020-01054-8 [Google Scholar]
  19. A. Ghosh, M. B. Roy, and P. K. Roy, Evaluating the performance of MIKE NAM model on rainfall–runof in lower Gangetic foodplain, West Bengal, India, (Modeling Earth Systems and Environment, 2022) https://doi.org/10.1007/s40808-021-01347-6. [Google Scholar]
  20. S. Shamsudin and N. Hashim, RAINFALL RUNOFF SIMULATION USING MIKE11 NAM, (Journal kejuruteraan awam (Journal of civil engineering), 2022), 15(2). [Google Scholar]
  21. I. Mohammed, The relationship between river flow and precipitation in the Orontes Basin, (Damascus University Journal, 2015), 31(2). [Google Scholar]
  22. Y. Hamdan, E. Layos, and I. Mohammed, Identify indicators of climate change through the analysis of the amount of rain on upper basin for Orontes River, (Al-Baath University Journal, 2017), 39(43). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.