Open Access
Issue |
E3S Web of Conf.
Volume 365, 2023
IV International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2022)
|
|
---|---|---|
Article Number | 03013 | |
Number of page(s) | 13 | |
Section | Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction | |
DOI | https://doi.org/10.1051/e3sconf/202336503013 | |
Published online | 30 January 2023 |
- Al-Raben A. H., Gunay N. On the application of a hydrodynamic model for a limited sea area. Coastal Engineering. 17(3–4), pp.173-194 (1992) [CrossRef] [Google Scholar]
- Belikov V.V., Norin S.V., Shkolnikov S. Ya. On Breaking of Polder Dams. Hydrotechnical Construction. 12, pp. 25-34 (2014) [Google Scholar]
- T. Buffard, T. Gallouet, J.M. Herard. Un sch´ema simple pour les ´equations de Saint-Venant, C. R. Acad. Sci. Paris S´er. I Math., 326 (3), pp.385-390 (1998) [Google Scholar]
- J.J. Cauret, J.F. Colombeau, A.Y. LeRoux. Solutions g´en´eralis´ees discontinues de probl`emes hyperboliques non conservatifs, C. R. Acad. Sci. Paris S´er.I Math., 302, 12, pp.435-437 (1986) [Google Scholar]
- Chalabi Y. Qiu, Relaxation schemes for hyperbolic conservation laws with stiff source terms: application to reacting Euler equations, J. Sci. Comput., 15(4), pp.395-416 (2000) [CrossRef] [Google Scholar]
- R. Courant K., Friedrichs H., Lewyt, On the Partial Difference Equations of Mathematical Physics. Mathematische Annalen 100, pp. 32-74 (1928) [CrossRef] [Google Scholar]
- C.M. Dafermos. Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) 325, Springer-Verlag, Berlin (2000) [CrossRef] [Google Scholar]
- C.M. Dafermos, L. Hsiao. Hyperbolic systems and balance laws with inhomogeneity and dissipation, Indiana Univ. Math. J., 31(4), pp. 471-491 (1982) [CrossRef] [Google Scholar]
- D.A. Drew. Mathematical modelling of two-phase flow. Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, Annual Review of Fluid Mechanics, 15, pp.261-291 (1983) [Google Scholar]
- P. Garcia-Navarro, M.E. V´azquez-Cend´on. On numerical treatment of the source terms in the shallow water equations, Comput. and Fluids, 29, pp. 951-979 (2000) [CrossRef] [Google Scholar]
- Fedotova Z.I. Substantiation of numerical method for modeling of long waves run-up on a shore. Computational Technologies. 7(5), pp.58-76 (2002) [Google Scholar]
- S.L. Gavrilyuk, J. Fabre. Lagrangian coordinates for a drift-flux model of a gas-liquid mixture. International Journal of Multiphase Flow. 22(3), pp. 453-460 (1996) [CrossRef] [Google Scholar]
- J.F. Gerbeau, B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst. Ser. B1(1), pp.89-102 (2001) [Google Scholar]
- L. Gosse. Localization effects and measure source terms in numerical schemes for balance laws, Math. Comp., 71(238), pp. 553-582 (2002) [Google Scholar]
- N. Goutal. Finite element solution for the transcritical shallow-water equations, Math. Methods Appl. Sci., 11(4), pp. 503-524 (1989) [CrossRef] [Google Scholar]
- N. Goutal, F. Maurel, Proceedings of the 2nd workshop on dam-break wave simulation, EDF-DER Report HE-43/97/016B (1997) [Google Scholar]
- Gauckler Ph. Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des Eaux, vol. Tome 64, Paris, France: Comptes Rendues de l'Académie des Sciences, pp.818–822 (1867) [Google Scholar]
- Kiselev P.G. Reference Book for Hydraulic Calculations. Fifth edition. M.-L. Energy. p. 313 (1974) [Google Scholar]
- Krutov A.N. Shkolnikov S. Ya. Numerical Modelling of Long Waves in the Lagrange Coordinates. S. Ya. Proc. N.N. Zubov State Oceanographic Institute. 72, p. 250 (2022) [Google Scholar]
- Kochin N.E., Kibel I.A., Rose N.V., Theoretical hydromechanics. Part 1. 6th edition, revised and supplemented, p.583, Moscow (1963) [Google Scholar]
- J. A. Künge, F. M. Holly, A. Verwey. Numerical methods in river hydraulics problems. Moscow: Energoatomizdat, p. 255 (1985) [Google Scholar]
- V.M. Lyatkher, Y.S. Yakovlev. Dynamics of Continuous Media in Calculations of Hydraulic Structures. Moscow: Energia, (1976) p. 391. [Google Scholar]
- R.J. LeVeque, H.C. Yee. A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. Comput. Phys., 86(1), pp. 187-210 (1990) [CrossRef] [Google Scholar]
- S.F. Liotta, V. Romano, G. Russo. Central schemes for balance laws of relaxation type, SIAM J. Numer. Anal., 38(4), pp. 1337-1356 (2000) [CrossRef] [Google Scholar]
- Manning R., 1891. On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland. 20, pp. 161–207 [Google Scholar]
- McKeon B. J., Zagarola M. V., Smits A. J. A new friction factor relationship for fully developed pipe flow”. Journal of Fluid Mechanics. Cambridge University Press. 538, pp. 429–443 (2005) [CrossRef] [Google Scholar]
- Militeev A.N. Solution of problems of hydraulics of shallow reservoirs and pools of hydroschemes with application of numerical methods. Мoscow (1982) [Google Scholar]
- Pal Arya S., Plaie E. J. Modelling of the Stably Stratified Atmospheric Boundary Layer. Atmos. Sci. 26(4), pp. 656-665 (1969) [CrossRef] [Google Scholar]
- Samarskiy A.A., Popov Yu.P., Differential methods of solving gas tasks. Textbook. - 3d edition, supplement. M.: Nauka. Gol'shov. ed. in Physics and Mathematics, (1992) p. 424. [Google Scholar]
- Stoker J.J., Waves on water. Mathematical theory and applications. Translated from English, (1959) p. 620. [Google Scholar]
- Wiseman J., Linear and non-linear waves. Translated from English by V.V. Zharinov. Edited by A.B. Shabanov. Edited by A.B. Shabat. p.624, Moscow (1977) [Google Scholar]
- Wolzinger N.E., Pyaskovsky R.V., Shallow Water Theory. Oceanological Problems and Numerical Methods, Gidrometeoizdat (1977) p. 206. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.