Open Access
Issue
E3S Web of Conf.
Volume 365, 2023
IV International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2022)
Article Number 03035
Number of page(s) 12
Section Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction
DOI https://doi.org/10.1051/e3sconf/202336503035
Published online 30 January 2023
  1. Assie, A.E., Eltaher, M.A. & Mahmoud, F.F. Behavior of a viscoelastic composite plates under transient load. J Mech Sci Technol 25. 2011. https://doi.org/10.1007/s12206-011-0302-6 [Google Scholar]
  2. Rahman, T., Jansen, E.L. & Gürdal, Z. Dynamic buckling analysis of composite cylindrical shells using a finite element based perturbation method. Nonlinear Dyn. Pp.389–401. 2011. https://doi.org/10.1007/s11071-011-0056-9 [CrossRef] [Google Scholar]
  3. Gonçalves, P.B., Silva, F.M.A. & Prado, Z.J. Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dyn. 2007. Pp. 121–145. https://doi.org/10.1007/s11071-006-9147-4 [Google Scholar]
  4. Pellicano, F., Amabili, M. Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads. International Journal of Solids and Structures. 2003. Pp.3229-3251. https://doi.org/10.1016/S0020-7683(03)00120-3. [CrossRef] [Google Scholar]
  5. Bauchau, O.A. A self-stabilized algorithm for enforcing constraints in multibody systems. International Journal of Solids and Structures. 2003. Pp. 3253-3271. https://doi.org/10.1016/S0020-7683(03)00159-8. [Google Scholar]
  6. Bauchau, O.A. A self-stabilized algorithm for enforcing constraints in multibody systems. International Journal of Solids and Structures. 2003. Pp. 3253-3271. https://doi.org/10.1016/S0020-7683(03)00159-8. [Google Scholar]
  7. Mehrabani, M.M., Jafari, A.A. & Azadi, M. Multidisciplinary optimization of a stiffened shell by genetic algorithm. J Mech Sci Technol 26. 2012. Pp.517–530. https://doi.org/10.1007/s12206-011-0912-z [CrossRef] [Google Scholar]
  8. Young-Shin Lee, Young-Wann Kim. Vibration analysis of rotating composite cylindrical shells with orthogonal stiffeners. Computers & Structures. 1998. Pp.271-281. https://doi.org/10.1016/S0045-7949(97)00047-3. [Google Scholar]
  9. Daneshjou, K., Talebitooti, M. Free Vibration Analysis of Rotating Stiffened Composite Cylindrical Shells by using the Layerwise-Differential Quadrature (LW-DQ) Method. Mech Compos Mater 50. 2014. Pp. 21–38. https://doi.org/10.1007/s11029-014-9390-6 [CrossRef] [Google Scholar]
  10. Yusefzad, Mahdi, and Firouz, Bakhtiari Nejad. A Study on the Free Vibration of the Prestressed Joined Cylindricalspherical Shell Structures. Applied Mechanics and Materials. 390. Trans Tech Publications Ltd. 2013. Pp. 207–214. Crossref, doi:10.4028/www.scientific.net/amm.390.207. [CrossRef] [Google Scholar]
  11. Missaoui, J., Cheng, L., Richard, M.J. Free and forced vibration of a cylindrical shell with a floor partition. Journal of Sound and Vibration. 1996. Pp. 21-40. ISSN 0022-460X. https://doi.org/10.1006/jsvi.1996.0045. [Google Scholar]
  12. Poultangari, R. Free and Forced Vibration Analysis of Stepped Circular Cylindrical Shells with Several Intermediate Supports Using an Extended Wave Method; a Generalized Approach. Latin American Journal of Solids and Structures. 13(11):2027-2058. 2016. DOI:10.1590/1679-78252876 [Google Scholar]
  13. Jafari, A.A., Bagheri, M. Free vibration of non-uniformly ring stiffened cylindrical shells using analytical, experimental and numerical methods. Thin-Walled Structures. 2006. Pp.82-90, ISSN 0263-8231, https://doi.org/10.1016/j.tws.2005.08.008. [Google Scholar]
  14. Tulkin Mavlanov, Sherzod Khudainazarov and Islomjon Khazratkulov Natural Vibrations Of Structurally Inhomogeneous Multiconnected Shell Structures With Viscoelastic Elements. Modelling and Methods of Structural Analysis. Journal of Physics. 1425 012017. 2020. doi:10.1088/1742-6596/1425/1/012017 [Google Scholar]
  15. Mavlanov T and Khudainazarov Sh. Calculation of structural-inhomogeneous multiply connected shell structures with viscoelastic elements. E3S Web of Conferences. Vol.97. No 040542. 2019. DOI: 10.1051/e3sconf/20199704054 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Mirsaidov, M.M., Safarov, I.I., Teshaev, M.K., Boltayev, Z.I. Dynamics of structural - Inhomogeneous coaxial-multi-layered systems “cylinder-shells”. Journal of Physics. 2020. № 0120331, ICAPSM 2020; Coimbatore, Virtual; India. DOI: 10.1088/1742-6596/1706/1/012033 [Google Scholar]
  17. Mirsaidov, M.M., Khudainazarov, Sh.O. Spatial natural vibrations of viscoelastic axisymmetric structures. Magazine of Civil Engineering. No.04. 2020. 96(4). Pp.118–128. DOI: 10.18720/MCE.96.10 [Google Scholar]
  18. Mirsaidov, M., Abdikarimov, R., Khudainazarov, S., Sabirjanov, T. Damping of vibrations of high-rise structures by viscoelastic dynamic dampers. E3S Web Conference. 2020. 224. 02020. / DOI 10.1051/e3sconf/202022402020 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Sherzod Khudainazarov, Talibjan Sabirjanov, Alisher Ishmatov Assessment of Dynamic Characteristics of High-Rise Structures Taking into Account Dissipative Properties of the Material. Journal of Physics. 1425. 2020. 012009 doi:10.1088/1742-6596/1425/1/012009 [Google Scholar]
  20. Ilyushin, A.A. Mechanics of Elastic and Plastic Strains of Solids. 2003. Collection of Works. Vol. 1 (1935-1945), Pp.232-272. [Google Scholar]
  21. Ilyushin A.A., Vasin R.A., Mossakovskii P.A. Theory of Elastoplastic Processes under Large Plastic Strains. 2000. Applied Problems of Mechanics of Thin-Walled Structures. Pp. 128-137. [Google Scholar]
  22. Koltunov M.A. Creep and relaxation - M.: Higher school. 1976. p. 277. [Google Scholar]
  23. Georgievskii, D.V., Pobedrya, B.E. Asymptotic analysis of evolution of a neck in extended thin rigid plastic solids. Russian Journal of Mathematical Physics. 23 (2). 2016. Pp. 200-206. [CrossRef] [Google Scholar]
  24. Pobedria, B.E., Georgievskii, D.V. Two thermodynamic laws as the forth and the fifth integral postulates of continuum mechanics. Studies in Systems. Decision and Control. 69. 2016. Pp. 317-325. [Google Scholar]
  25. Brovko, G.L., Bykov, D.L., Vasin, R.A., Georgievskii, D.V., Kiiko, I.A., Molodtsov, I.N., Pobedrya, B.E. A.A. Il'yushin's scientific heritage and development of his ideas in mechanics. 2011. Mechanics of Solids. Pp. 3-14. [CrossRef] [Google Scholar]
  26. Blend, D. Theory of linear viscoelasticity. - M.: Mir. 1974. p. 338. [Google Scholar]
  27. Rzhanitsyn, A.R. Creep theory. - M.: Stroyizdat. 1968. p. 416. [Google Scholar]
  28. Mavlyanov, T. Development of methods and algorithms for calculating shell structures, taking into account structural heterogeneity and interaction with various media. Monograph. –T.:TIIIAME. -2019. p.217 [Google Scholar]
  29. Mayboroda, V.P. On the question of the applicability of influence functions determined from quasi-static experiments for solving dynamic problems of viscoelasticity. Polymer Mechanics. No. 3. 1974. Pp. 537-540. [Google Scholar]
  30. Karmishin, A.V., Lyaskovets, V.A., Myachenkov, V.I., Frolov, A.N. Statics and dynamics of thin-walled shell structures. - Ms: Mashinostroenie. 1975. p. 376. [Google Scholar]
  31. Myachenkov, V.I., Maltsev, V.P. Methods and algorithms for calculating spatial structures on the ESHES. - M.:Mashinostroenie. 1984. p. 278. [Google Scholar]
  32. Mavlyanov, T. Dynamics of viscoelastic axisymmetric and prismatic structures. Strength calculations. 1988. Mashinostroenie. Pp.186-199. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.