Open Access
Issue
E3S Web Conf.
Volume 366, 2023
The 2021 International Symposium of the Society of Core Analysts (SCA 2021)
Article Number 01004
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202336601004
Published online 27 January 2023
  1. IEA, The Role of CO2 Storage. (2019). [Google Scholar]
  2. W. De Muynck, N. De Belie, and W. Verstraete, Microbial carbonate precipitation in construction materials: A review, Ecological Engineering, 36(2): p. 118-136 (2010) [CrossRef] [Google Scholar]
  3. F.G. Ferris, et al., Bacteriogenic Mineral Plugging, Journal of Canadian Petroleum Technology, 36(09): p. 5 (1996) [Google Scholar]
  4. J. Wu, et al., Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery, RSC Advances, 7(59): p. 37382-37391 (2017) [CrossRef] [Google Scholar]
  5. Y. Fujita, et al., Evaluating the Potential of Native Ureolytic Microbes To Remediate a 90Sr Contaminated Environment, Environmental Science & Technology, 44(19): p. 7652-7658. (2010) [CrossRef] [PubMed] [Google Scholar]
  6. F.D. Meyer, et al., Microbiologically-Induced Soil Stabilization: Application of Sporosarcina pasteurii for Fugitive Dust Control, GeoFrontiers, Vol. 2011, p.4002-4011 (2011) [Google Scholar]
  7. A.C. Mitchell, et al., Microbially Enhanced Carbon Capture and Storage by MineralTrapping and Solubility-Trapping. Environmental Science & Technology, 44(13): p. 5270-5276 (2010) [CrossRef] [PubMed] [Google Scholar]
  8. A. Phillips, et al., Potential CO2 Leakage Reduction through Biofilm-Induced Calcium Carbonate Precipitation, Environmental Science & Technology, 47: p. 142-149 (2013) [CrossRef] [PubMed] [Google Scholar]
  9. A.B. Cunningham, et al., Microbially enhanced geologic containment of sequestered supercritical CO2, Energy Procedia, 1(1): p. 3245-3252 (2009) [CrossRef] [Google Scholar]
  10. F. Hammes, and W. Verstraete*, Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1(1): p. 3-7 (2002) [CrossRef] [Google Scholar]
  11. B. Krajewska, Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13: p. 5967 (2018) [CrossRef] [PubMed] [Google Scholar]
  12. J.W. Mullin, Crystallization, 4th ed., Oxford: Butterworth-Heinemann (2001) [Google Scholar]
  13. W. Zhang, et al., In Situ Real-Time Study on Dynamics of Microbially Induced Calcium Carbonate Precipitation at a Single-Cell Level, Environmental Science & Technology, 52(16): p. 9266-9276 (2018) [CrossRef] [PubMed] [Google Scholar]
  14. L.A. Van Paassen, Biogrout, ground improvement by microbial induced carbonate precipitation, in TU Delft, Applied Sciences, TU Delft: The Netherlands (2009) [Google Scholar]
  15. S. Stocks-Fischer, J.K. Galinat, and S.S. Bang, Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11): p. 1563-1571 (1999) [CrossRef] [Google Scholar]
  16. G.E. Mountassir, et al., Hydrodynamic coupling in microbially mediated fracture mineralization: Formation of self-organized groundwater flow channels, Water Resources Research, 50(1): p. 1-16 (2014) [CrossRef] [Google Scholar]
  17. C. Wu, et al., Microbially induced calcite precipitation along a circular flow channel under a constant flow condition, Acta Geotechnica, 14(3): p. 673-683 (2019) [CrossRef] [Google Scholar]
  18. W. Song, et al., Mechanisms of Multiphase Reactive Flow using Biogenically CalciteFunctionalized Micromodels, Lab on a Chip, 18, (2018) [Google Scholar]
  19. Y. Wang, et al., A microfluidic chip and its use in characterising the particle-scale behaviour of Microbial-Induced Carbonate Precipitation (MICP), Géotechnique, 69 (2018) [Google Scholar]
  20. Y. Wang, et al., Microscale Visualization of Microbial-Induced Calcium Carbonate Precipitation Processes, Journal of Geotechnical and Geoenvironmental Engineering, 145: p. 04019045 (2019) [CrossRef] [Google Scholar]
  21. M. Buchgraber, et al., Creation of a dualporosity micromodel for pore-level visualization of multiphase flow, Journal of Petroleum Science and Engineering, 86-87: p. 27-38 (2012) [CrossRef] [Google Scholar]
  22. M. Buchgraber, A.R. Kovscek, and L.M. Castanier, A Study of Microscale Gas Trapping Using Etched Silicon Micromodels, Transport in Porous Media, 95(3): p. 647-668 (2012) [CrossRef] [Google Scholar]
  23. B. Benali, et al. [Preprint] Pore-scale Bubble Population Dynamics of CO2-Foam at Reservoir Pressure. https://essoar.org (2021) [Google Scholar]
  24. J.H. Yoon, et al., Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of th. International Journal of Systematic and Evolutionary Microbiology, 51(3): p. 1079-1086 (2001) [CrossRef] [PubMed] [Google Scholar]
  25. P. De Vos, G.M. Garrity, and D.H. Bergey, Bergey’s manual of systematic bacteriology: Vol. 3 : The Firmicutes. 2nd ed. Vol. 3., New York: Springer (2009) [Google Scholar]
  26. M.S. Reddy, Biomineralization of calcium carbonates and their engineered applications: a review, Frontiers in Microbiology, 4(314) (2013) [Google Scholar]
  27. C.-S. Tang, et al., Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5): p. 94 (2020) [CrossRef] [Google Scholar]
  28. J. Zehner, et al., Microbial-induced calcium carbonate precipitation: an experimental toolbox for in situ and real time investigation of micro-scale pH evolution, RSC Advances, 10(35): p. 20485-20493 (2020) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.